×

A new approach for solving fractional partial differential equations. (English) Zbl 1266.35140

Summary: We propose a new approach for solving fractional partial differential equations based on a nonlinear fractional complex transformation and the general Riccati equation and apply it to solve the nonlinear time fractional biological population model and the (4+1)-dimensional space-time fractional Fokas equation. As a result, some new exact solutions for them are obtained. This approach can be suitable for solving fractional partial differential equations with more general forms than the method proposed by S. Zhang and H.-Q. Zhang [Phys. Lett., A 375, No. 7, 1069–1073 (2011; Zbl 1242.35217)].

MSC:

35R11 Fractional partial differential equations

Citations:

Zbl 1242.35217
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Saadatmandi and M. Dehghan, “A new operational matrix for solving fractional-order differential equations,” Computers & Mathematics with Applications, vol. 59, no. 3, pp. 1326-1336, 2010. · Zbl 1189.65151 · doi:10.1016/j.camwa.2009.07.006
[2] Y. Zhou, F. Jiao, and J. Li, “Existence and uniqueness for p-type fractional neutral differential equations,” Nonlinear Analysis: Theory, Methods & Applications A, vol. 71, no. 7-8, pp. 2724-2733, 2009. · Zbl 1175.34082 · doi:10.1016/j.na.2009.01.105
[3] L. Galeone and R. Garrappa, “Explicit methods for fractional differential equations and their stability properties,” Journal of Computational and Applied Mathematics, vol. 228, no. 2, pp. 548-560, 2009. · Zbl 1169.65121 · doi:10.1016/j.cam.2008.03.025
[4] J. C. Trigeassou, N. Maamri, J. Sabatier, and A. Oustaloup, “A Lyapunov approach to the stability of fractional differential equations,” Signal Processing, vol. 91, no. 3, pp. 437-445, 2011. · Zbl 1203.94059 · doi:10.1016/j.sigpro.2010.04.024
[5] W. Deng, “Smoothness and stability of the solutions for nonlinear fractional differential equations,” Nonlinear Analysis: Theory, Methods & Applications A, vol. 72, no. 3-4, pp. 1768-1777, 2010. · Zbl 1182.26009 · doi:10.1016/j.na.2009.09.018
[6] F. Ghoreishi and S. Yazdani, “An extension of the spectral Tau method for numerical solution of multi-order fractional differential equations with convergence analysis,” Computers & Mathematics with Applications, vol. 61, no. 1, pp. 30-43, 2011. · Zbl 1207.65108 · doi:10.1016/j.camwa.2010.10.027
[7] J. T. Edwards, N. J. Ford, and A. C. Simpson, “The numerical solution of linear multi-term fractional differential equations: systems of equations,” Journal of Computational and Applied Mathematics, vol. 148, no. 2, pp. 401-418, 2002. · Zbl 1019.65048 · doi:10.1016/S0377-0427(02)00558-7
[8] M. Muslim, “Existence and approximation of solutions to fractional differential equations,” Mathematical and Computer Modelling, vol. 49, no. 5-6, pp. 1164-1172, 2009. · Zbl 1165.34304 · doi:10.1016/j.mcm.2008.07.013
[9] A. M. A. El-Sayed and M. Gaber, “The Adomian decomposition method for solving partial differential equations of fractal order in finite domains,” Physics Letters A, vol. 359, no. 3, pp. 175-182, 2006. · Zbl 1236.35003 · doi:10.1016/j.physleta.2006.06.024
[10] A. M. A. El-Sayed, S. H. Behiry, and W. E. Raslan, “Adomian’s decomposition method for solving an intermediate fractional advection-dispersion equation,” Computers & Mathematics with Applications, vol. 59, no. 5, pp. 1759-1765, 2010. · Zbl 1189.35358 · doi:10.1016/j.camwa.2009.08.065
[11] J. He, “A new approach to nonlinear partial differential equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 2, no. 4, pp. 230-235, 1997. · doi:10.1016/S1007-5704(97)90007-1
[12] G.-c. Wu and E. W. M. Lee, “Fractional variational iteration method and its application,” Physics Letters A, vol. 374, no. 25, pp. 2506-2509, 2010. · Zbl 1237.34007 · doi:10.1016/j.physleta.2010.04.034
[13] S. Guo and L. Mei, “The fractional variational iteration method using He’s polynomials,” Physics Letters A, vol. 375, no. 3, pp. 309-313, 2011. · Zbl 1241.35216 · doi:10.1016/j.physleta.2010.11.047
[14] J.-H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257-262, 1999. · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3
[15] J.-H. He, “A coupling method of a homotopy technique and a perturbation technique for non-linear problems,” International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37-43, 2000. · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[16] Z. Odibat and S. Momani, “A generalized differential transform method for linear partial differential equations of fractional order,” Applied Mathematics Letters of Rapid Publication, vol. 21, no. 2, pp. 194-199, 2008. · Zbl 1132.35302 · doi:10.1016/j.aml.2007.02.022
[17] M. Cui, “Compact finite difference method for the fractional diffusion equation,” Journal of Computational Physics, vol. 228, no. 20, pp. 7792-7804, 2009. · Zbl 1179.65107 · doi:10.1016/j.jcp.2009.07.021
[18] Q. Huang, G. Huang, and H. Zhan, “A finite element solution for the fractional advection-dispersion equation,” Advances in Water Resources, vol. 31, no. 12, pp. 1578-1589, 2008. · doi:10.1016/j.advwatres.2008.07.002
[19] S. Guo, L. Mei, Y. Li, and Y. Sun, “The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics,” Physics Letters A, vol. 376, no. 4, pp. 407-411, 2012. · Zbl 1255.37022 · doi:10.1016/j.physleta.2011.10.056
[20] B. Lu, “Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations,” Physics Letters A, vol. 376, no. 28-29, pp. 2045-2048, 2012. · Zbl 1266.35139 · doi:10.1016/j.physleta.2012.05.013
[21] S. Zhang and H.-Q. Zhang, “Fractional sub-equation method and its applications to nonlinear fractional PDEs,” Physics Letters A, vol. 375, no. 7, pp. 1069-1073, 2011. · Zbl 1242.35217 · doi:10.1016/j.physleta.2011.01.029
[22] G. Jumarie, “Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results,” Computers & Mathematics with Applications, vol. 51, no. 9-10, pp. 1367-1376, 2006. · Zbl 1137.65001 · doi:10.1016/j.camwa.2006.02.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.