×

Simo-Vu Quoc rods using Clifford algebra. (English) Zbl 0940.74081

Summary: We present an alternative derivation of Simo and Vu Quoc’s numerical algorithm [J. C. Simo and L. Vu-Quoc, Comput. Methods Appl. Mech. Eng. 66, No. 2, 125-161 (1988; Zbl 0618.73100)] for modelling the nonlinear dynamic behaviour of rods. The original derivation uses differential topology, describing large rotations using the Lie group SO(3) and Lie algebra so(3), but resorting to quaternions for the numerical implementation. The new derivation uses Clifford or geometric algebra for both the formulation and implementation. We show that the new approach is considerably simpler to follow, and thereby allows to investigate alternative modelling strategies. The new description is also novel in that all formulae for rotational kinematics are applicable in a Euclidean space of any dimension.

MSC:

74S99 Numerical and other methods in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
15A66 Clifford algebras, spinors

Citations:

Zbl 0618.73100

Software:

ABAQUS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Simo, Comput. Meth. Appl. Mech. Engng. 66 pp 125– (1988)
[2] New Foundations for Classical Mechanics, Reidel, Dordrecht, 1986. · Zbl 0612.70001 · doi:10.1007/978-94-009-4802-0
[3] and Clifford Algebra to Geometric Calculus, Reidel, Dordrecht, 1984. · doi:10.1007/978-94-009-6292-7
[4] and Foundations of Mechanics, 2nd edn., Benjamin/Cummings, Reading, MA, 1978.
[5] Mathematical Methods of Classical Mechanics, 2nd edn., Springer, Berlin, 1989. · doi:10.1007/978-1-4757-2063-1
[6] and Mathematical Foundations of Elasticity, Prentice-Hall, Englewood Cliffs, N.J., 1983.
[7] (ed.), Handbuch der Physik, Springer, Berlin, 1960.
[8] Simo, Comput. Meth. Appl. Mech. Engng. 58 pp 79– (1986)
[9] Simo, Comput. Meth. Appl. Mech. Engng. 108 pp 319– (1993)
[10] Simo, Comput. Meth. Appl. Mech. Engng. 96 pp 189– (1992)
[11] Simo, Int. J. Numer. Meth. Engng. 38 pp 1431– (1995)
[12] and Dynamics, in (ed.), Geometric (Clifford) Algebras in Physics, Birkhauser, Boston, 1996.
[13] Sansour, Comput. Meth. Appl. Mech. Engng. 120 pp 1– (1995)
[14] Jelenic, Proc. R. Soc. Lond. (1998)
[15] Cardona, Int. J. Numer. Meth. Engng. 26 pp 2403– (1988)
[16] Cardona, Comput. Struct. 33 pp 801– (1989)
[17] Challinor, Phys. Lett A227 pp 143– (1997) · doi:10.1016/S0375-9601(97)00041-8
[18] Lasenby, Phil. Trans. R. Soc. Lond. A356 pp 487– (1998)
[19] Doran, Class. Quantum. Grav. (1997)
[20] ABAQUS Theory Manual, (Version 5.4). Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, RI, 1994.
[21] (ed)., Spacecraft Attitude Determination and Control, Kluwer, Dordrecht, 1978. · doi:10.1007/978-94-009-9907-7
[22] Argyris, Comput. Meth. Appl. Mech. Engng. 32 pp 85– (1982)
[23] Gull, Found. Phys. 23 pp 1175– (1993)
[24] Newmark, J. Eng. Mech. 85 pp 67– (1959)
[25] Hilber, Earth. Engng. Struct. Dyn. 5 pp 283– (1977)
[26] Jelenic, Int. J. Numer. Meth. Engng. (1997)
[27] Nonlinear Finite Element Analysis of Solids and Structures, Vol. 2, Advanced Topics, Wiley, Chichester, 1997. · Zbl 0878.39001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.