×

The simulation of dynamic crack propagation using the cohesive segments method. (English) Zbl 1162.74438

Summary: The cohesive segments method is a finite element framework that allows for the simulation of the nucleation, growth and coalescence of multiple cracks in solids. In this framework, cracks are introduced as jumps in the displacement field by employing the partition of unity property of finite element shape functions. The magnitude of these jumps are governed by cohesive constitutive relations. In this paper, the cohesive segments method is extended for the simulation of fast crack propagation in brittle solids. The performance of the method is demonstrated in several examples involving crack growth in linear elastic solids under plane stress conditions: tensile loading of a block; shear loading of a block and crack growth along and near a bi-material interface.

MSC:

74R10 Brittle fracture
74S05 Finite element methods applied to problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Babuška, I.; Melenk, J. M., The partition of unity method, Int. J. Numer. Methods Eng., 40, 4, 727-758 (1997) · Zbl 0949.65117
[2] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Methods Eng., 45, 5, 601-620 (1999) · Zbl 0943.74061
[3] Belytschko, T.; Chiapetta, R. L.; Bartel, H. D., Efficient large scale non-linear transient analysis by finite elements, Int. J. Numer. Methods Eng., 10, 3, 579-596 (1976)
[4] Belytschko, T.; Liu, W. K.; Moran, B., Nonlinear Finite Elements for Continua and Structures (2000), Wiley: Wiley England · Zbl 0959.74001
[5] Camacho, G. T.; Ortiz, M., Computational modelling of impact damage in brittle materials, Int. J. Solids Struct., 33, 2899-2938 (1996) · Zbl 0929.74101
[6] Coker, D.; Rosakis, A. J.; Needleman, A., Dynamic crack growth along a polymer composite-homalite interface, J. Mech. Phys. Solids, 51, 3, 425-460 (2003) · Zbl 1015.74521
[7] Daux, C.; Moës, N.; Dolbow, J.; Sukumar, N.; Belytschko, T., Arbitrary branched and intersecting cracks with the extended finite element method, Int. J. Numer. Methods Eng., 48, 12, 1741-1760 (2000) · Zbl 0989.74066
[8] Falk, M. L.; Needleman, A.; Rice, J. R., A critical evaluation of cohesive zone models of dynamic fracture, J. Phys. IV, 11, Pr5, 43-50 (2001)
[9] Freund, L. B., Dynamic Fracture Mechanics (1998), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0712.73072
[10] Gao, H. J., Surface roughening and branching instabilities in dynamic fracture, J. Mech. Phys. Solids, 41, 457-486 (1993)
[11] Gao, H. J., A theory of local limiting speed in dynamic fracture, J. Mech. Phys. Solids, 44, 1453-1474 (1996)
[12] Kalthoff, J. A.; Bürgel, A., Influence of loading rate on shear fracture toughness for failure mode transition, Int. J. Impact Eng., 30, 957-971 (2004)
[13] Kalthoff, J. K.; Winkler, S., Failure mode transition at high rates of loading, (Chiem, C. Y.; Kunze, H. D.; Meyer, L. W., Proceedings of the International Conference on Impact Loading and Dynamic Behaviour of Materials (1988), Deutsche Gesellshaft für Metallkunde), 43-56
[14] Li, S. F.; Liu, W. K.; Rosakis, A. J.; Belytschko, T.; Hao, W., Mesh free Galerkin simulation of dynamic shear band propagation and failure mode transition, Int. J. Solids Struct., 39, 1213-1240 (2002) · Zbl 1090.74698
[15] Mason, J. J.; Rosakis, A. J.; Ravichandran, G., Full field measurements of the dynamic deformation field around a growing adiabatic shear band at the tip of a dynamically loaded crack or notch, J. Mech. Phys. Solids, 42, 1679-1697 (1994)
[16] Needleman, A., A continuum model for void nucleation by inclusion debonding, J. Appl. Mech., 54, 525-531 (1987) · Zbl 0626.73010
[17] Needleman, A.; Tvergaard, V., Analysis of a brittle-ductile transition under dynamic shear loading, Int. J. Solids Struct., 32, 2571-2590 (1995) · Zbl 0919.73222
[18] Papoulia, K. D.; Sam, S. H.; Vavasis, S. A., Time-continuous cohesive interface finite elements in explicit dynamics, Int. J. Numer. Meth. Eng., 58, 5, 679-701 (2003) · Zbl 1032.74676
[19] Papoulia, K. D.; Vavasis, S. A.; Ganguly, P., Spatial convergence of crack nucleation using a cohesive finite element model on a pinwheel-based mesh, Int. J. Numer. Meth. Eng., 67, 1-16 (2006) · Zbl 1110.74854
[20] Ravi-Chandar, K.; Knauss, W. G., An experimental investigation into dynamic fracture: I: crack initiation and arrest, Int. J. Frac., 25, 4, 247-262 (1984)
[21] Ravi-Chandar, K., On the failure mode transitions in polycarbonate under dynamic mixed-mode loading, Int. J. Solids Struct., 32, 925-938 (1995) · Zbl 0866.73059
[22] Remmers, J.J.C., 2006. Discontinuities in Materials and Structures, A unifying computational approach. Ph.D. Dissertation, Delft University of Technology, Delft, The Netherlands.; Remmers, J.J.C., 2006. Discontinuities in Materials and Structures, A unifying computational approach. Ph.D. Dissertation, Delft University of Technology, Delft, The Netherlands.
[23] Remmers, J. J.C.; deBorst, R.; Needleman, A., A cohesive segments method for the simulation of crack growth, Comput. Mech., 31, 69-77 (2003) · Zbl 1038.74679
[24] Sharon, E.; Fineberg, J., The dynamics of fast fracture, Adv. Eng. Mater., 1, 119-122 (1999)
[25] Sharon, E.; Gross, S. P.; Fineberg, J., Local crack branching as a mechanism for instability in dynamic fracture, Phys. Rev. Lett., 74, 5096-5099 (1995)
[26] Wells, G. N.; Sluys, L. J., A new method for modelling cohesive cracks using finite elements, Int. J. Numer. Methods Eng., 50, 12, 2667-2682 (2001) · Zbl 1013.74074
[27] Xu, X. P.; Needleman, A., Numerical simulations of fast crack growth in brittle solids, J. Mech. Phys. Solids, 42, 1397-1434 (1994) · Zbl 0825.73579
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.