×

An algorithm computing the regular formal solutions to a system of linear differential equations. (English) Zbl 0951.34066

The authors consider the first-order linear differential system \[ x{dY\over dx}= A(x)Y.\tag{1} \] It writes \(A= x^{-q}(A_0+ A_1x+\cdots)\), \(A_0\neq 0\), for the series expansion of \(A\), where the coefficients are matrices over a subfield \(K\) of the field of complex numbers. There exists a basis of \(n\) formal solutions of the form \[ y_i(t)= e^{q_i(t)} t^{\lambda_i} z_i(t),\quad i= 1,\dots, n, \] where \(t^{r_i}= x\) for positive integers \(r_i,q_i\in t^{-1} \overline{K}[t^{-1}]\), \(\lambda_i\in\overline K\) and \(z_i\in\overline K[[t]]^n[\log(t)]\). These solutions form the columns of a formal fundamental matrix solution to (1) which can be written as \[ U(t)= H(t) t^\Lambda e^{Q(t)} \] with \(t^r= x\) for a positive integer \(r, H\in M_n\overline K[[t]]\) is a formal matrix power series, \(\Lambda\in M_n\overline K\) is a constant matrix with eigenvalues \(\lambda_1,\dots, \lambda_n\) and \(Q= \text{diag}(q_1,\dots, q_n)\). The problem is to find a nonzero solution to (1) of the form \[ y(x)= x^\lambda \sum^\infty_{i=0} g_i x^i,\quad g_0\neq 0, \] or decide that there is no such solution. Insight is gained if one considers systems of the more general form, \(D\theta(Y)= NY\), where \(\theta= x{d\over dx}\), \(D\) and \(N\) are formal power series matrices without a pole. Note that the matrix \(D^{-1}\) may have a pole. The main result is then within software MAPLE, an algorithm is developed giving the solutions to be \[ y_s(x)= h_s(x)+ \log(x) h_{s- 1}(x)+\cdots+ {\log^{s- 1}(x)\over(s- 1)!} h_1(x), \] with \(h_i\in \overline K((x))^n\).

MSC:

34M25 Formal solutions and transform techniques for ordinary differential equations in the complex domain
34A25 Analytical theory of ordinary differential equations: series, transformations, transforms, operational calculus, etc.
34A30 Linear ordinary differential equations and systems

Software:

DESIR; Maple
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. Abramov, K. Kvashenko, Proceedings of ISSAC ’91, Bonn, Germany, 1991, ACM Press, New York, 267, 270; S. Abramov, K. Kvashenko, Proceedings of ISSAC ’91, Bonn, Germany, 1991, ACM Press, New York, 267, 270
[2] M. Barkatou, Proceedings of ISSAC ’88, Rome, Italy, 1988, ACM Press, New York, 183, 195; M. Barkatou, Proceedings of ISSAC ’88, Rome, Italy, 1988, ACM Press, New York, 183, 195
[3] Barkatou, M., An algorithm for computing a companion block diagonal form for a system of linear differential equations, J. Appl. Algebr. Eng. Commun. Comput., 4 (1993) · Zbl 0780.65038
[4] M. Barkatou, Proceedings of ISSAC ’95 Montreal, 1995, ACM Press, New York; M. Barkatou, Proceedings of ISSAC ’95 Montreal, 1995, ACM Press, New York
[5] Barkatou, M., An algorithm to compute the exponential part of a formal fundamental matrix solution of a linear differential system, J. Appl. Algebr. Eng. Commun. Comput., 8, 1-23 (1997) · Zbl 0867.65034
[6] Barkatou, M., On rational solutions of systems of linear differential equations, J. Symb. Comput., 28, 547-567 (1998) · Zbl 0943.34008
[7] Gantmacher, F., Théorie des Matrices (1966), Jacques Gabay · Zbl 0136.00410
[8] Hartman, P., Ordinary Differential Equations (1964), Wiley: Wiley New York · Zbl 0125.32102
[9] A. Hilali, 1987; A. Hilali, 1987
[10] Hilali, A.; Wazner, A., Formes super-irréductibles des systèmes différentiels linéaires, Numer. Math., 50, 429-449 (1987) · Zbl 0627.65091
[11] Ince, E., Ordinary differential equations (1944), Dover: Dover New York · Zbl 0063.02971
[12] Levelt, A., Stabilizing differential operators: a method for computing invariants at irregular singularities, (Singer, M., Differential Equations and Computer Algebra (1991)), 181-228 · Zbl 0746.34012
[13] J. Moser, 1960, The order of a singularity in Fuchs’ theory, 379, 398; J. Moser, 1960, The order of a singularity in Fuchs’ theory, 379, 398 · Zbl 0117.04902
[14] Pflügel, E., An Algorithm for Computing Exponential Solutions of First Order Linear Differential Systems, (Küchlin, W., Proceedings of ISSAC ’97 (1997), ACM Press: ACM Press New York) · Zbl 0916.65074
[15] Pflügel, E., On the Latest Version of DESIR, Theor. Comput. Sci., 187, 81-86 (1997) · Zbl 0898.65036
[16] Singer, M., Liouvillian solutions of linear differential equations with Liouvillian coefficients, J. Symb. Comput., 11, 251-273 (1991) · Zbl 0776.12002
[17] R. Sommeling, 1993; R. Sommeling, 1993
[18] Turritin, H., Convergent solutions of ordinary linear homogeneous differential equations in the neighborhood of an irregular singular point, Acta Math., 93, 27-66 (1955) · Zbl 0064.33603
[19] M. van Hoeij, 1996; M. van Hoeij, 1996
[20] Wagenführer, E., Über regulär-singuläre lösungen von systemen linearer differentialgleichungen, I. J. Reine Ang. Math., 267, 90-114 (1974) · Zbl 0287.34007
[21] Wasow, W., Asymptotic Expansions for Ordinary Differential Equations (1967), Krieger: Krieger Huntington, NY · Zbl 0169.10903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.