×

A new approach to constrained total least squares image restoration. (English) Zbl 0960.65044

A new iterative, regularized, and constrained total least squares image restoration algorithm is proposed. Neumann boundary conditions are used the reduce the boundary artifacts that normally occur in restoration process. Numerical experiments show the effectiveness and fast convergence of the new iteration scheme.

MSC:

65F20 Numerical solutions to overdetermined systems, pseudoinverses
68U10 Computing methodologies for image processing

Software:

KELLEY; VanHuffel
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] H. Andrews, B. Hunt, Digital Image Restoration, Prentice-Hall, Englewood Cliffs, NJ, 1977; H. Andrews, B. Hunt, Digital Image Restoration, Prentice-Hall, Englewood Cliffs, NJ, 1977
[2] M. Banham, A. Katsaggelos, Digital image restoration, IEEE Signal Processing Magazine, March 1997, pp. 24-41; M. Banham, A. Katsaggelos, Digital image restoration, IEEE Signal Processing Magazine, March 1997, pp. 24-41
[3] Bell, T., Electronics and the stars, IEEE Spectrum, 32, 8, 16-24 (1995)
[4] K. Castleman, Digital Image Processing, Prentice-Hall, Englewood Cliffs, NJ, 1996; K. Castleman, Digital Image Processing, Prentice-Hall, Englewood Cliffs, NJ, 1996
[5] Chan, R.; Ng, M., Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38, 427-482 (1996) · Zbl 0863.65013
[6] Chan, R.; Ng, M.; Plemmons, R., Generalization of Strang’s preconditioner with applications to Toeplitz least squares problems, J. Numer. Linear Algebra Appl., 3, 45-64 (1996) · Zbl 0842.65029
[7] Chan, T.; Wong, C., Total variation blind deconvolution, IEEE Trans. Image Process., 7, 3, 370-375 (1998)
[8] J. Dennis, R. Schnabel, Numerical Methods for Unconstrained Optimalization and Nonlinear Equation, Prentice-Hall, Englewood Cliffs, NJ, 1983; J. Dennis, R. Schnabel, Numerical Methods for Unconstrained Optimalization and Nonlinear Equation, Prentice-Hall, Englewood Cliffs, NJ, 1983 · Zbl 0579.65058
[9] H. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers, The Netherlands, 1996; H. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers, The Netherlands, 1996
[10] G. Golub, P. Hansen, D. O’Leary, Tikhonov regularization and total least squares, SCCM Research Report, Stanford, 1998; G. Golub, P. Hansen, D. O’Leary, Tikhonov regularization and total least squares, SCCM Research Report, Stanford, 1998
[11] Golub, G.; Van Loan, C., An analysis of total least squares problems, SIAM J. Numer. Anal., 17, 883-893 (1980) · Zbl 0468.65011
[12] R. Gonzalez, R. Woods, Digital Image Processing, Addison-Wesley, New York, 1992; R. Gonzalez, R. Woods, Digital Image Processing, Addison-Wesley, New York, 1992
[13] Hanke, M.; Nagy, J., Restoration of atmospherically blurred images by symmetric indefinite conjugate gradient techniques, Inverse Problems, 12, 157-173 (1996) · Zbl 0859.65141
[14] J. Hardy, Adaptive Optics for Astronomical Telescopes, Oxford Press, New York, 1998; J. Hardy, Adaptive Optics for Astronomical Telescopes, Oxford Press, New York, 1998
[15] S. Van Huffel, J. Vandewalle, The Total Least Squares Problem, SIAM, Philadelphia, PA, 1991; S. Van Huffel, J. Vandewalle, The Total Least Squares Problem, SIAM, Philadelphia, PA, 1991 · Zbl 0789.62054
[16] A. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, Englewood Cliffs, NJ, 1989; A. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, Englewood Cliffs, NJ, 1989 · Zbl 0744.68134
[17] Jefferies, S.; Christou, J., Restoration of astronomical images by iterative blind deconvolution, Astrophys. J., 415, 862-874 (1993)
[18] Kamm, J.; Nagy, J., A total least squares method for Toeplitz systems of equations, BIT, 38, 560-582 (1998) · Zbl 0918.65028
[19] T. Kelley, Iterative Methods for Optimization, SIAM, Philadelphia, PA, 1999; T. Kelley, Iterative Methods for Optimization, SIAM, Philadelphia, PA, 1999 · Zbl 0934.90082
[20] D. Kundur, D. Hatzinakos, Blind image deconvolution, IEEE Signal Processing Magazine, May 1996, pp. 43-64; D. Kundur, D. Hatzinakos, Blind image deconvolution, IEEE Signal Processing Magazine, May 1996, pp. 43-64
[21] R. Lagendijk, J. Biemond, Iterative Identification and Restoration of Images, Kluwer Academic Publishers, Dordrecht, 1991; R. Lagendijk, J. Biemond, Iterative Identification and Restoration of Images, Kluwer Academic Publishers, Dordrecht, 1991 · Zbl 0752.68093
[22] Lagendijk, R.; Tekalp, A.; Biemond, J., Maximum likehood image and blur identification: a unifying approach, Opt. Eng., 29, 422-435 (1990)
[23] J. Lim, Two-Dimensional Signal and Image Processing, Prentice-Hall, Englewood Cliffs, NJ, 1990; J. Lim, Two-Dimensional Signal and Image Processing, Prentice-Hall, Englewood Cliffs, NJ, 1990
[24] F. Luk, D. Vandevoorde, Reducing boundary distortion in image restoration, in: Proceedings of the SPIE 2296, Advanced Signal Processing Algorithms, Architectures and Implementations VI, 1994; F. Luk, D. Vandevoorde, Reducing boundary distortion in image restoration, in: Proceedings of the SPIE 2296, Advanced Signal Processing Algorithms, Architectures and Implementations VI, 1994 · Zbl 0826.65042
[25] Nelson, J., Reinventing the telescope, Popular Sci., 85, 57-59 (1995)
[26] Mesarović, V.; Galatsanos, N.; Katsaggelos, A., Regularized constrained total least squares image restoration, IEEE Trans. Image Process., 4, 1096-1108 (1995)
[27] S. Nash, A. Sofer, Linear and Nonlinear Programming, McGraw-Hill, New York, 1996; S. Nash, A. Sofer, Linear and Nonlinear Programming, McGraw-Hill, New York, 1996
[28] M. Ng, R. Chan, T. Wang, A fast algorithm for deblurring models with Neumann boundary conditions, Res. Rept. 99-04, Department of Mathematics, The Chinese University of Hong Kong; SIAM J. Sci. Comput. 21, 851-866; M. Ng, R. Chan, T. Wang, A fast algorithm for deblurring models with Neumann boundary conditions, Res. Rept. 99-04, Department of Mathematics, The Chinese University of Hong Kong; SIAM J. Sci. Comput. 21, 851-866 · Zbl 0951.65038
[29] Ng, M.; Plemmons, R., Fast recursive least squares using FFT-based conjugate gradient iterations, SIAM J. Sci. Comput., 17, 920-941 (1996) · Zbl 0860.65030
[30] M. Ng, R. Plemmons, S. Qiao, Regularization of RIF blind image deconvolution, IEEE Trans. Image Process., June 2000, to appear; M. Ng, R. Plemmons, S. Qiao, Regularization of RIF blind image deconvolution, IEEE Trans. Image Process., June 2000, to appear
[31] K. Rao, P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications, Academic Press, Boston, MA, 1990; K. Rao, P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications, Academic Press, Boston, MA, 1990 · Zbl 0726.65162
[32] M. Roggemann, B. Welsh, Imaging Through Turbulence, CRC Press, Boca Raton, FL, 1996; M. Roggemann, B. Welsh, Imaging Through Turbulence, CRC Press, Boca Raton, FL, 1996
[33] Strang, G., The discrete cosine transform, SIAM Rev., 41, 135-147 (1999) · Zbl 0939.42021
[34] C. Vogel, T. Chan, R. Plemmons, Fast algorithms for phase diversity-based blind deconvolution, in: D. Bonaccini, R. Tyson (Eds.), Adaptive Optical System Technologies, Proceedings of SPIE, vol. 3353, 1998, pp. 994-105; C. Vogel, T. Chan, R. Plemmons, Fast algorithms for phase diversity-based blind deconvolution, in: D. Bonaccini, R. Tyson (Eds.), Adaptive Optical System Technologies, Proceedings of SPIE, vol. 3353, 1998, pp. 994-105
[35] You, Y.; Kaveh, M., A regularization approach to joint blur identification and image restoration, IEEE Trans. Image Process., 5, 416-427 (1996)
[36] Zhu, W.; Wang, Y.; Yao, Y.; Chang, J.; Graber, H.; Barbour, R., Iterative total least squares image reconstruction algorithm for optical tomography by the conjugate gradient algorithm, J. Opt. Soc. Amer. A, 14, 799-807 (1997)
[37] Zhu, W.; Wang, Y.; Zhang, J., Total least squares reconstruction with wavelets for optical tomography, J. Opt. Soc. Amer. A, 15, 2639-2650 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.