×

A finite element method for magnetohydrodynamics. (English) Zbl 1044.76030

Summary: This paper presents a finite element method for the solution of three-dimensional incompressible magnetohydrodynamic flows. Two important issues are thoroughly addressed. First, appropriate formulations for the magnetic governing equations and the corresponding weak variational forms are discussed. The selected \(({\mathbf B},q)\) formulation is conservative in the sense that the local divergence-free condition of the magnetic field is accounted for in the variational sense. A Galerkin-least-squares variational formulation is used allowing equal-order approximations for all unknowns. In the second issue, a solution algorithm is developed for the solution of the coupled problem which is valid for both high and low magnetic Reynolds numbers. Several numerical benchmark tests are carried out to assess the stability and accuracy.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics

Software:

ILUT
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Roe, P. L.; Balsara, D. S., Notes on the eigensystem of magnetohydrodynamics, SIAM J. Appl. Math., 56, 1, 57 (1996) · Zbl 0845.35092
[2] K.G. Powell, Solution of Euler and magnetohydrodynamic equations on solution-adaptative Cartesian grids, Von Karman Institute for Fluid Dynamics, Lecture Series 1996-06, Computational Fluid Dynamics, Concordia University, Montreal, 1996; K.G. Powell, Solution of Euler and magnetohydrodynamic equations on solution-adaptative Cartesian grids, Von Karman Institute for Fluid Dynamics, Lecture Series 1996-06, Computational Fluid Dynamics, Concordia University, Montreal, 1996
[3] J.S. Walker, in: H. Branover, P.S. Likoudis, M. Moon (Eds.), Laminar Duct Flows in Strong Magnetic Fields: Liquid-Metal Flows and Magnetohydrodynamics, vol. 2, American Institute of Aeronautics and Astrodynamics, New York, 1986, p. 3; J.S. Walker, in: H. Branover, P.S. Likoudis, M. Moon (Eds.), Laminar Duct Flows in Strong Magnetic Fields: Liquid-Metal Flows and Magnetohydrodynamics, vol. 2, American Institute of Aeronautics and Astrodynamics, New York, 1986, p. 3
[4] Hua, T. Q.; Walker, J. S., MHD flow in rectangular ducts with inclined non-uniform transverse magnetic field, Fusion Engrg. Design, 27, 703 (1995)
[5] Cuevas, S.; Picologlou, B. F.; Walker, J. S.; Talmage, G., Liquid-metal MHD flow in rectangular ducts with thin conducting or insulating walls: laminar and turbulent solutions, Int. J. Engrg. Sci., 35, 5, 485 (1997) · Zbl 0910.76095
[6] Ramos, J. I.; Winowich, N. S., Finite difference and finite element methods for MHD channel flows, IJNMF, 11, 907 (1990) · Zbl 0704.76066
[7] Scandiuzzi, R.; Schrefler, B. A., F.E.M. in steady MHD duct flow problems, IJNME, 30, 647 (1990) · Zbl 0714.76062
[8] Biro, O.; Preiss, K., On the use of magnetic vector potential in the finite element analysis of three-dimensional eddy currents, IEEE Trans. Magnetics, 25, 4, 3145 (1989)
[9] Fautrelle, Y. R., Analytical and numerical aspects of electromagnetic stirring induced by alternating magnetic fields, JFM, 102, 405 (1981) · Zbl 0484.76120
[10] Mestel, A. J., Magnetic levitation of liquid metals, JFM, 117, 27 (1982) · Zbl 0495.76097
[11] S.D. Lympany, J.W. Evans, R. Moreau, Magnetohydrodynamic effects in aluminium reduction cells, in: H.K. Moffat, M.R.E. Proctor (Eds.), Metallurgical Applications of Magnetohydrodynamics, Proceedings of a Symposium of the International Union of the Theoretical and Applied Mechanics, Cambridge, UK, 6-10 September 1982, The Metals Society, London, 1984, p. 15; S.D. Lympany, J.W. Evans, R. Moreau, Magnetohydrodynamic effects in aluminium reduction cells, in: H.K. Moffat, M.R.E. Proctor (Eds.), Metallurgical Applications of Magnetohydrodynamics, Proceedings of a Symposium of the International Union of the Theoretical and Applied Mechanics, Cambridge, UK, 6-10 September 1982, The Metals Society, London, 1984, p. 15
[12] Besson, O.; Bourgeois, J.; Chevalier, P. A.; Rappaz, J.; Touzani, R., Numerical modeling of electromagnetic casting processes, JCP, 92, 482 (1991) · Zbl 0721.65076
[13] Conraths, H. J., Eddy current and temperature simulation in thin moving metal strips, IJNME, 39, 141 (1996) · Zbl 0855.65132
[14] Masse, P.; Fautrelle, Y.; Gagnoud, A., Coupled methods for 3D coupled problems, 10 years of experiments in MHD, IEEE Trans. Magnetics, 28, 1275 (1992)
[15] Emson, C.; Simkin, J., An optimal method for 3D eddy currents, IEEE Trans. Magnetics, 19, 2450 (1983)
[16] B. Jiang, J. Wu, L.A. Povinelli, The origin of spurious solutions in computational electromagnetics, NASA-TM-106921, E-9633, ICOMP-95-8, 1995; B. Jiang, J. Wu, L.A. Povinelli, The origin of spurious solutions in computational electromagnetics, NASA-TM-106921, E-9633, ICOMP-95-8, 1995
[17] Brezis, H., Analyse Fonctionnelle (1983), Masson: Masson Paris · Zbl 0511.46001
[18] Landau, L. D.; Lifshitz, E. M.; Pitaevskii, L. P., Electrodynamics of Continuous Media (1984), Pergamon Press: Pergamon Press Oxford
[19] Ben Salah, N.; Soulaimani, A.; Habashi, W. G.; Fortin, M., A conservative stabilized finite element method for the magnetohydrodynamic equations, IJNMF, 29, 535 (1999) · Zbl 0938.76049
[20] N. Ben Salah, A. Soulaimani, W.G. Habashi, M. Fortin, A conservative stabilized finite element method for the magnetohydrodynamic equations, in: S.N. Alturi, G. Yagawa (Eds.), Advances in Computational Engineering Science, International Computational Engineering and Science 97, Tech Science Press, Forsyth, Georgia, 1997, p. 269; N. Ben Salah, A. Soulaimani, W.G. Habashi, M. Fortin, A conservative stabilized finite element method for the magnetohydrodynamic equations, in: S.N. Alturi, G. Yagawa (Eds.), Advances in Computational Engineering Science, International Computational Engineering and Science 97, Tech Science Press, Forsyth, Georgia, 1997, p. 269 · Zbl 0938.76049
[21] Sterl, A., Numerical simulation of liquid-metal MHD flows in rectangular ducts, JFM, 216, 161 (1990) · Zbl 0698.76123
[22] Seungsoo, L.; Dulikravich, G. S., Magnetohydrodynamic steady flow computations in three dimensions, IJNMF, 13, 917 (1991) · Zbl 0741.76049
[23] G.S. Dulikravich, V. Ahuja, L. Seungsoo, Three-dimensional control of crystal growth using magnetic fields, in: Proceedings of SPIE, The International Society for Optical Engineering Proceedings of Smart Structures and Materials, vol. 1916, 1993; G.S. Dulikravich, V. Ahuja, L. Seungsoo, Three-dimensional control of crystal growth using magnetic fields, in: Proceedings of SPIE, The International Society for Optical Engineering Proceedings of Smart Structures and Materials, vol. 1916, 1993 · Zbl 0925.76775
[24] Sazhin, S. S.; Makhlouf, M., Solution of magnetohydrodynamic problems based on a conventional computational fluid dynamics code, IJNMF, 21, 433 (1995) · Zbl 0848.76074
[25] Peterson, J. S., On the finite element approximation of incompressible flows of an electrically conducting fluid, Numer. Methods Partial Diff. Equations, 4, 57 (1988) · Zbl 0657.76086
[26] Gardner, L. T.R.; Gardner, G. A., A two-dimensional bi-cubic and B-Spline finite element: used in a study of MHD duct flow, Comput. Methods Appl. Mech. Engrg., 124, 365 (1995)
[27] C. Trophime, Modélisation Numérique du Couplage agnétohydrodynamique (MHD) Fort, Application à la Propulsion MHD Navale, Thèse de Doctorat à l’Institut National Polytechnique de Grenoble, France, 1995; C. Trophime, Modélisation Numérique du Couplage agnétohydrodynamique (MHD) Fort, Application à la Propulsion MHD Navale, Thèse de Doctorat à l’Institut National Polytechnique de Grenoble, France, 1995
[28] N. Ben Salah, A finite element method for the fully coupled magnetohydrodynamics, Ph.D. Thesis at Concordia University, Montreal, Canada, 1999; N. Ben Salah, A finite element method for the fully coupled magnetohydrodynamics, Ph.D. Thesis at Concordia University, Montreal, Canada, 1999
[29] Tanahashi, T.; Oki, Y., Numerical analysis of natural convection of thermo-electrically conducting fluids in a square cavity under a uniform magnetic field, JSME International Journal, 39, 508 (1996)
[30] F. Brezzi, J. Pitkaranta, On the stabilization of finite element approximations of the stokes problem, in: W. Hackbusch (Ed.), Efficient Solutions of Elliptic Systems, vol, 10, Notes on Numerical Fluid Mechanics, Viewig, Wiesbaden, 1984, p. 11; F. Brezzi, J. Pitkaranta, On the stabilization of finite element approximations of the stokes problem, in: W. Hackbusch (Ed.), Efficient Solutions of Elliptic Systems, vol, 10, Notes on Numerical Fluid Mechanics, Viewig, Wiesbaden, 1984, p. 11 · Zbl 0552.76002
[31] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol. 15, Springer, Berlin, 1991; F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics, vol. 15, Springer, Berlin, 1991 · Zbl 0788.73002
[32] Hugues, T. J.R.; Franca, L.; Ballestra, M., A new finite element formulation for computational fluid dynamics: V circumventing the Babuska-Brezzi condition: a stable Petrov Galerkin formulation of the stokes problem accommodating equal order interpolation, Comput. Methods Appl. Mech. Engrg., 59, 85 (1986) · Zbl 0622.76077
[33] Hugues, T. J.R.; Franca, L.; Hubert, G. M., A new finite element formulation for computational fluid dynamics: VIII the Galerkin/least squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg., 73, 173 (1989) · Zbl 0697.76100
[34] Dutto, L. C., On the iterative methods for solving linear systems of equations, Revue Européenne des Élements Finis, 2, 423 (1993) · Zbl 0924.65025
[35] Saad, Y.; Schultz, M. H., GMRES: A generalized minimal residual algorithm for solving non-symmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856 (1986) · Zbl 0599.65018
[36] Saad, Y., Iterative Methods for Sparse Linear Systems (1996), PWS Publishing: PWS Publishing Boston · Zbl 1002.65042
[37] Saad, Y., ILUT: a dual threshold incomplete ILU factorization, Numer. Linear Algebra Appl., 1, 387 (1994) · Zbl 0838.65026
[38] Saad, Y., Numer. Linear Algebra Appl., 7, 856 (1986)
[39] Moffat, H. K., Magnetic Field Generation in Electrically Conducting Fluids (1983), Cambridge University Press: Cambridge University Press London
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.