×

Numerical simulation of the motion of granular material using object-oriented techniques. (English) Zbl 1098.74739

Summary: The objective of this contribution is to present a numerical simulation method to model the motion of a packed bed on a moving grate or in a rotary kiln using object-oriented techniques. The packed bed can be described as granular material consisting of a large number of particles. The method chosen is the Lagrangian time-driven method and it uses the position, the orientation, the velocity and the angular velocity of particles as independent variables. These are obtained by time integration of the three-dimensional dynamics equations which were derived from the classical Newtonian mechanics approach based on the second law of Newton for the translation and rotation of each particle in the granular material. This includes keeping track of all forces and moments acting on each particle at every time-step. Particles are treated as contacting visco-elastic bodies which can overlap each other. Contact forces depend on the overlap geometry, material properties and dynamics of particles and include normal and tangential components of repulsion force with visco-elastic models for energy dissipation through internal and surface friction. The resulting equations of particle motion are solved by the Gear predictor-corrector scheme of fifth-order accuracy.
The simulation method is based on object-oriented methodologies and programmed in the programming language C++. This approach supports objects which can be used for three-dimensional particles of various shapes and sizes and for walls as boundaries. The programming modules are implemented in the TOSCA (tools of object-oriented software for continuum mechanic applications) software package which allows for a high degree of flexibility and for shortening the duration of the software development process. As methods for particle motion may deal with particles of different sizes and materials, the approach allows to describe transport processes in technical applications.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74E20 Granularity
68N19 Other programming paradigms (object-oriented, sequential, concurrent, automatic, etc.)

Software:

OOPIC; ToSCA; NAMD
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fan, L.-S; Rathman, J.; Ghosh-Dastidar, A.; Weimer, A. W.; Kimura, S., The potential of reaction engineering, Chem. Engrg. Prog., 90, 32, 55-64 (1994)
[2] Ennis, B. J.; Green, J.; Davies, R., The legacy of neglect in the US, Chem. Engrg. Prog., 90, 32, 32-43 (1994)
[3] Nasuno, S.; Kudrolli, A.; Gollub, J. P., Friction in granular layers: hysteresis and precursors, Phys. Rev. Lett., 79, 5, 949-952 (1997)
[4] Lubkin, G. B., Experiments find hysteresis and precursors in the stick-flip friction of a granular system, Physics Today, 17-19 (September 1997)
[5] Umbanhowar, P. B.; Melo, F.; Swinney, H. L., Localized excitations in a vertically vibrated granular layer, Nature, 382, 29, 793-796 (1996)
[6] Umbanhowar, P., Patterns in the sand, Nature, 389, 9, 541-542 (1997)
[7] Shinbrot, T., Competition between randomizing impacts and inelastic collisions in granular pattern formation, Nature, 389, 9, 574-576 (1997)
[8] Khan, M. I.; Tardos, G. I., Stability of wet agglomerates in granular shear flows, J. Fluid Mech., 347, 347-368 (1997) · Zbl 0901.76021
[9] Hogue, C.; Newland, D., Efficient computer computation of moving granular particles, Powder Technol., 78, 51-66 (1994)
[10] Perram, J. W.; Wertheim, M. S.; Lebowitz, J. L.; Williams, G. O., Monte Carlo simulations of hard spheroids, Chem. Phys. Lett., 105, 3, 277-280 (1984)
[11] Rosato, A.; Strandburg, K. J.; Prinz, F.; Swendsen, R. H., Why the brazil nuts are on top: size segregation of particulate matter by shaking, Phys. Rev. Lett., 58, 10, 1038-1040 (1987)
[12] Devillard, P., Scaling behaviour in size segregation (Brazil Nuts), J. Phys. I France, 51, 369-373 (1990)
[13] Camp, P. J.; Allen, M. P., Hard ellipsoid rod-plate mixtures: Onsager theory and computer simulation, Physica A, 229, 410-427 (1996)
[14] Baxter, G. W.; Behringer, R. P., Cellular automata models of granular flow, Phys. Rev. A, 42, 2, 1017-1020 (1990)
[15] Caram, H.; Hong, D. C., Random-walk approach to granular flows, Phys. Rev. Lett., 67, 7, 828-831 (1991)
[16] Brach, R. M., Friction, restitution and energy loss in planar collisions, J. Appl. Mech., 51, 164-170 (1984) · Zbl 0569.70015
[17] Keller, J. B., Impact with friction, J. Appl. Mech., 53, 1-4 (1986) · Zbl 0592.73028
[18] Kuwabara, G.; Kono, K., Restitution coefficient in a collision between two spheres, Jpn. J. Appl. Phys., 26, 8, 1230-1233 (1987)
[19] Brach, R. M., Rigid body collisions, J. Appl. Mech., 56, 133-138 (1989)
[20] Stronge, W. J., Rigid body collision with friction, Proc. Roy. Soc. London A, 431, 169-181 (1990) · Zbl 0703.70016
[21] Wang, Y.; Mason, M. T., Two-dimensional rigid-body collision with friction, J. Appl. Mech., 59, 635-642 (1992) · Zbl 0775.70021
[22] Kumaran, V., Velocity distribution function for a dilute granular material in shear flow, J. Fluid Mech., 340, 319-341 (1997) · Zbl 0889.76005
[23] Rapaport, D. C., The event scheduling problem in molecular dynamic simulation, J. Comput. Phys., 34, 184-201 (1980)
[24] Allen, M. P.; Frenkel, D.; Talbot, J., Molecular dynamics simulation using hard particles, Comput. Phys. Rep., 9, 301-353 (1989)
[25] Lubachevsky, B. D., How to simulate billiards and similar systems, J. Comput. Phys., 94, 255-283 (1991) · Zbl 0716.68094
[26] McNamara, S.; Young, W. R., Inelastic collapse in two dimensions, Phys. Rev. E, 50, 1, R28-R31 (1994)
[27] Luding, S.; Duran, J.; Clement, E.; Rajchenbach, J., Simulation of dense granular flow: dynamic arches and spin organization, J. Phys. I France, 6, 823-836 (1996)
[28] Hoomans, B. P.B; Kuipers, J. A.M; Briels, W. J.; Van Swaiij, W. P.M, Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidized bed: a hard-sphere, an approach, Chem. Engrg. Sci., 51, 1, 99-118 (1996)
[29] Marin, M., Event-driven hard-particle molecular dynamics using bulk-synchronous parallelism, Comput. Phys. Commun., 102, 81-96 (1997)
[30] Peters, M. H., Nonequilibrium molecular dynamics simulation of free-molecule gas flows in complex geometries with an application to Brownian motion of aggregate aerosols, Phys. Rev. E, 50, 6, 4609-4617 (1994)
[31] Cundall, P. A.; Strack, O. D.L, A discrete numerical model for granular assemblies, Geotechnique, 29, 47-65 (1979)
[32] Ristow, G. H., Granular dynamics: a review about recent molecular dynamics simulations of granular materials, Ann. Rev. Comput. Phys. I, 1, 275-308 (1994)
[33] Ristow, G. H., Molecular dynamics simulations of granular materials on the Intel IPSC/860, Int. J. Modern Phys. C, 3, 1281-1293 (1992)
[34] Taguchi, Y.-H, Powder turbulence: direct onset of turbulent flow, J. de Phys. II France, 2, 2103-2114 (1992)
[35] Blumen, A.; Rajchenbach, J.; Duran, J.; Luding, S.; Clement, E., Anomalous energy dissipation in molecular-dynamics simulations of grains: the “detachment” effect, Phys. Rev. E, 50, 5, 4113-4122 (1994)
[36] Sadd, M. H.; Tai, Q.; Shukla, A., Contact law effects on wave propagation in particulate materials using distinct element modeling, Int. J. Non-Linear Mech., 28, 2, 251-265 (1993) · Zbl 0800.73054
[37] Wolf, D. E.; Schäfer, J.; Dippel, S., Force schemes in simulations of granular materials, J. Phys. I France, 6, 1, 5-20 (1996)
[38] Tsuji, Y.; Tanaka, T.; Ishida, T., Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe, Powder Technol., 71, 239-250 (1992)
[39] Allen, M. P.; Tidesley, D. J., Computer Simulation of Liquids (1991), Clarendon Press: Clarendon Press Oxford
[40] Lubachevsky, B. D., How to simulate billiards and similar systems, J. Comput. Phys., 94, 255-283 (1991) · Zbl 0716.68094
[41] Khan, E. H.; Al-A’ali, M.; Girgis, M. R., Object-oriented programming for structured programmers, Computer, 28, 48-57 (1995)
[42] Verboncoer, J. P.; Langdon, A. B.; Glaad, N. T., An object-oriented electromagnetic pic code, Comput. Phys. Commun., 87, 199-211 (1995)
[43] Reynders, V. W.; Forslund, D. W.; Hinker, P. J.; Tholburn, M.; Kilman, D. G.; Humphrey, W. F., Oops: an object-oriented particle simulation class library for distributed architectures, Comput. Phys. Commun., 87, 212-224 (1995)
[44] Baekdal, L.; Joosen, W.; Larsen, T.; Kolafa, J.; Ovensen, J. H.; Parram, J. W.; Petersen, H. G.; Bywater, R.; Ratner, M., The objected-oriented development of parallel application in protein dynamics: why we need software tools for HPCN applications, Comput. Phys. Commun., 97, 124-135 (1997)
[45] Nelson, M. T.; Humphrey, W.; Gursoy, A.; Dalke, A.; Kale, L. V.; Skeel, R. D.; Schulten, K., A parallel, object-oriented molecular dynamics program, Int. J. Supercomputer Appl. High Perform. Comput., 10, 251-268 (1996)
[46] Stroustrup, B., The C++ Programming Language (1990), Addison-Wesley: Addison-Wesley Reading, MA
[47] Deitel, H. M.; Deitel, P. J., How to Program (1994), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0862.68008
[48] Parsons, D., Object-Oriented Programming with C++ (1994), DP Publications: DP Publications London
[49] Haney, S. W., Is C++ fast enough for scientific computing?, Comp. Phys., 8, 690-694 (1994)
[50] Sadus, R. J., Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation (1999), Elsevier: Elsevier Amsterdam
[51] Monjau, D.; Schulze, S., Objektorientierte Programmierung (1992), Vieweg: Vieweg Braunschweig
[52] Thompson, P. A.; Grest, G. S., Granular flow: friction and the dilatancy transition, Phys. Rev. Lett., 67, 1751-1754 (1991)
[53] Peters, B., Efficient software development and use for engineering applications with TOSCA (Tools of Object-Oriented Software for Continuum Mechanic Applications), (CFD 96, Fourth Annual Conference of the CFD Society of Canada, Ottawa, Ont., Canada (June 2-4, 1996))
[54] Peters, B., Application de la conception objet orienté à la modélisation de l’incinération de déchets municipaux, (Informatique pour l’Environnement’97, Strasbourg (10-12 septembre 1997))
[55] Alhir, S., UML in a Nutshell (1998), O’Reilly
[56] Burkhardt, R., UML - Unified Modeling Language (1997), Addison-Wesley: Addison-Wesley Reading, MA
[57] Booch, G., Object-Oriented Analysis and Design with Applications (1994), Benjamin/Cummings: Benjamin/Cummings Menlo Park, CA
[58] Rumbaugh, J.; Blaha, M.; Premerlani, W.; Eddy, F., Object-Oriented Modelling and Design (1991), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ
[59] Jacobson, I., Object-Oriented Software Engineering: A Use Case Driven Approach (1994), Addison-Wesley: Addison-Wesley Reading, MA
[60] Ting, J. M., A robust algorithm for ellipse-based discrete element modelling of granular materials, Comput. Geotech., 13, 175-186 (1992)
[61] Peters, B.; Džiugys, A., Bestimmung des Kontaktes für die Bewegung von elliptischen, granularen Medien, (Annual Scientific Conference, Göttingen, Gesellschaft für Angewandte Mathematik und Mechanik (2000)) · Zbl 1057.74579
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.