×

Multi-fluid modelling of laminar polydisperse spray flames: origin, assumptions and comparison of sectional and sampling methods. (English) Zbl 1160.76419

Summary: A first attempt at deriving a fully Eulerian model for polydisperse evaporating sprays was developed by Tambour et al with the so-called sectional approach. However, the complete derivation of the sectional ’multi-fluid’ conservation equations from the Boltzmann-type spray equation was never provided, neither was the set of underlying assumptions nor the comparison with the classical Lagrangian model: the sampling method. In this paper, we clarify the set of assumptions necessary in order to derive the multi-fluid sectional model from the spray equation at the ‘kinetic level’ and provide the derivation of the whole set of conservation equations describing the dispersed liquid phase. Whereas the previous derivation is conducted in any space dimension, we restrict ourselves to one-dimensional stationary flows where the droplets do not turn back and derive a Eulerian sampling model which is equivalent in this context to the usual Lagrangian particle approach. We then identify some situations, even within this restrictive framework, where the sectional approach fails to reproduce the coupling of the vaporization and dynamics of the spray, the sampling method then being required. In the domain of applicability of the sectional approach, the two methods are then compared numerically in the configuration of counterflow spray diffusion flames. The two methods, if refined enough, give quite similar results, except for some small differences, the origin of which is identified. It is proved that the sampling method is more precise even if it generates oscillations due to the intrinsic representation of a continuous function by Dirac delta functions. We thus provide a comprehensive analysis of the sectional approach from both the modelling and numerical points of view.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
80A22 Stefan problems, phase changes, etc.
35L60 First-order nonlinear hyperbolic equations
35Q35 PDEs in connection with fluid mechanics

Software:

Kiva-2
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Giovangigli V, Math. Models Methods Appl. Sci. 8 pp 251– (1998) · Zbl 0937.35145 · doi:10.1142/S0218202598000123
[2] Giovangigli V, Multicomponent Flow Modeling, (Modeling and Simulation in Science, Engineering and Technology) (1999) · doi:10.1007/978-1-4612-1580-6
[3] Crowe C T, J. Fluids Eng. pp 325– (1977) · doi:10.1115/1.3448756
[4] Dukowicz J K, J. Comput. Phys. 35 pp 229– (1980) · Zbl 0437.76051 · doi:10.1016/0021-9991(80)90087-X
[5] O’Rourke, P J. 1981. ”Collective drop effects on vaporizing liquid sprays”. Los Alamos National Laboratory, 87545.PhD Thesis
[6] Amsden, A A, O’Rourke, P J and Butler, T D. 1989. ”KIVA II, A computer program for chemically reactive flows with sprays”. Los Alamos, New Mexico: Los Alamos National Laboratory.Report, No LA-11560-MS
[7] Hylkema, J. 1999. ”Modélisation cinétique et simulation numérique d’un brouillard dense de gouttelettes”. Application aux propulseurs à poudrePhD Thesis, ENSAE
[8] Gupta H C, AIAA J. 16 pp 1053– (1978) · doi:10.2514/3.7606
[9] Hasselman L C, SAE paper (1978)
[10] Travis J R, Nucl. Sci. Eng. 61 pp 1– (1976)
[11] Raviart P A, Math. Mod. Methods Appl. Sci. 5 pp 297– (1995) · Zbl 0837.76089 · doi:10.1142/S021820259500019X
[12] Massot, M, Kumar, M, Gomez, A and Smooke, M D. Counterflow spray diffusion flames of heptane: computations and experiments. 27th Int. Symp. on Combustion. pp.1975–83. Pittsburgh, PA: Combustion Institute.
[13] Domelevo K, J. Comput. Phys. 133 pp 256– (1997) · Zbl 0883.76065 · doi:10.1006/jcph.1997.5660
[14] Greenberg J G, Combust. Sci. Technol. 50 pp 255– (1986) · doi:10.1080/00102208608923936
[15] Williams F A, Phys. Fluids 1 pp 541– (1958) · Zbl 0086.41102 · doi:10.1063/1.1724379
[16] Williams F A, Combustion Theory (Combustion Science and Engineering Series) (1985)
[17] Greenberg J B, Combust. Flame 93 pp 90– (1993) · doi:10.1016/0010-2180(93)90085-H
[18] Massot M, C. R. Acad. Sci., Paris I 332 pp 869– (2001) · Zbl 1067.76088 · doi:10.1016/S0764-4442(01)01937-1
[19] Laurent, F, Massot, M and Villedieu, P. 2001. ”Eulerian multi-fluid modeling for the numerical simulation of polydisperse dense liquid sprays”.Internal Report, MAPLY, UMR5585, submitted · Zbl 1067.76088
[20] Domelevo, K. 1998. ”The kinetic-sectional approach for evaporating sprays”.Internal Report, no 98-20, MIP, UMR 5640
[21] Ern A, Multicomponent Transport Algorithms, (Lecture Notes in Physics. New Series Monographs 24) (1994)
[22] Ern A, Combust. Theory Modelling 2 pp 349– (1998) · Zbl 0944.76092 · doi:10.1088/1364-7830/2/4/001
[23] Ben-Dakhlia, R, Giovangigli, V and Rosner, D. Soret effect in counterflow spray diffusion flames. 28th Int. Symp. on Combustion. Edinburgh. Pittsburgh, PA: Combustion Institute. · Zbl 0999.80501
[24] Villedieu P, C. R. Acad. Sci., Paris I 325 pp 323– (1997) · Zbl 0897.76077 · doi:10.1016/S0764-4442(97)83964-X
[25] Clift R, Bubbles, Drops and Particles (1978)
[26] Abramzon B, Int. J. Heat Mass Transfer 32 pp 1605– (1989) · doi:10.1016/0017-9310(89)90043-4
[27] Yuen M C, Combust. Sci. Technol. 14 pp 147– (1973) · doi:10.1080/00102207608547524
[28] Linteris G T, Combust. Sci. Technol. 80 pp 468– (1991) · doi:10.1080/00102209108951790
[29] Laurent, F, Santoro, V, Noskov, M, Gomez, A, Smooke, M D and Massot, M. 2001. ”Improvement of the sectional approach for modeling laminar poly-disperse spray flames: treatment of the distribution tail, computations and experiments”.Internal Report, MAPLY, UMR5585
[30] Gao, L P, D’Angelo, Y, Silverman, I, Gomez, A and Smooke, M D. Quantitative comparison of detailed numerical computations and experiments in counterflow spray diffusion flames. 26th Int. Symp. on Combustion. pp.1739–46. Pittsburgh, PA: Combustion Institute.
[31] Laurent, F and Massot, M. 2001. ”Numerical analysis of detailed droplet models in the context of kinetic formulations for dilute evaporating sprays”. in preparation
[32] Raviart P A, Numerical Methods in Fluid Dynamics (Lecture Notes in Mathematics 1127) pp 243– (1985) · doi:10.1007/BFb0074532
[33] Smooke, M D, Crump, J, Seshadri, K and Giovangigli, V. Comparison between experimental measurements and numerical calculations of the structure of counterflow, diluted, methane–air, premixed flames. 23rd Int. Symp. on Combustion. pp.503–11. Pittsburgh, PA: Combustion Institute.
[34] Darabiha N, Mathematical Modeling in Combustion and Related Topics pp 491– (1988)
[35] Held T J, Combust. Sci. Technol. 123 pp 107– (1997) · doi:10.1080/00102209708935624
[36] Hindmarsh A C, Scientific Computing (1983)
[37] Hairer E, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems (1991) · Zbl 0729.65051 · doi:10.1007/978-3-662-09947-6
[38] Turns S R, An Introduction to Combustion: Concepts and Applications (McGraw-Hill Series in Mechanical Engineering) (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.