×

A parallel 3D dendritic growth simulator using the phase-field method. (English) Zbl 1139.76324

Summary: We describe an implementation of a parallel finite-difference algorithm for the simulation of alloy solidification in three dimensions using the phase-field model. We also describe the visualization of the output from this simulator. Although this type of simulation has been accomplished before in two dimensions, extending this to three dimensions presents scaling problems for both the computations and the subsequent rendering of the results for visualization. This is due to the \(O(n^4)\) execution time of the simulation algorithm as well as the \(O(n^3)\) space requirements for holding the required three-dimensional arrays of field parameters. Additionally, rendering the output of the three-dimensional simulation stresses the available software and hardware when the simulations extend over computational grids of size \(500\times 500\times 500\). Parallel computing libraries and hardware-supported rendering combine to help make this simulator simple to implement, portable, and efficient even when run in heterogeneous environments. This has all been accomplished using simple static uniform grids and finite differencing.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76T99 Multiphase and multicomponent flows
80A22 Stefan problems, phase changes, etc.
80A20 Heat and mass transfer, heat flow (MSC2010)
65Y05 Parallel numerical computation

Software:

OpenDX
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Bower, T. F.; Brody, H. D.; Flemings, M. C., Trans. Met. Soc. AIME, 43, 624 (1966)
[2] Hunt, J. D., Solidification and Casting of Metals (1979), Metals Society: Metals Society Amsterdam, p. 3
[3] Kattamis, T. Z.; Couglin, J. C.; Flemings, M. C., Trans. Met. Soc. AIME, 239, 1504 (1967)
[4] Feurer, U.; Wunderlin, R., DGM Fachber, 38 (1977)
[5] Kirkwood, D. H., Mater. Sci. Eng., 73, L1 (1985)
[6] Mortensen, A., Metall. Trans., 22A, 569 (1991)
[7] Voller, V. R.; Sundarraj, S., (Piwonka, T. S.; Voller, V.; Katgerman, L., Moldeling of Casting, Welding and Advanced Solidification Processes—V (1993), TMS: TMS Warrendale), 251
[8] Brody, H. D.; Flemings, M. C., Trans. Met. Soc. AIME, 236, 615 (1966)
[9] Battle, T. P.; Pelke, R. D., Met. Trans., 21A, 357 (1990)
[10] Kobayashi, S., J. Cryst. Growth, 88, 87 (1988)
[11] Beckermann, C.; Diepers, H. J.; Steinbach, I.; Karma, A.; Tong, X., J. Comp. Phys., 154, 468 (1999)
[12] Kurz, W.; Fisher, D. J., Fundamentals of Solidification (1989), Trans Tech Publishing: Trans Tech Publishing Zürich
[13] Osher, S. J.; Tryggvason, G., J. Comp. Phys., 169, 249 (2001)
[14] Tryggvason, G.; Brunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Jan, Y. J., J. Comp. Phys., 169, 708 (2001)
[15] Warren, J. A.; Boettinger, W. J., Acta Met. Mater., 43, 689 (1995)
[16] Langer, J. S., (Grinstein, G.; Mazenko, G., Directions in Condensed Matter Physics (1986), World Scientific: World Scientific Philadelphia), 164
[17] Caginalp, G., (Garrido, L., Applications of Field Theory to Statistical Mechanics (1985), Springer-Verlag: Springer-Verlag Berlin), 216
[18] Collins, J. B.; Levine, H., Phys. Rev. B, 31, 6119 (1985)
[19] Wheeler, A. A.; Boettinger, W. J.; McFadden, G. B., Phys. Rev. A, 45, 7424 (1992)
[20] Wheeler, A. A.; Boettinger, W. J.; McFadden, G. B., Phys. Rev. E, 47, 1893 (1993)
[21] Kobayashi, R., Physica D, 63, 410 (1993)
[22] Karma, A.; Rappel, W.-J., Phys. Rev. E, 53, 3017 (1996)
[23] Karma, A.; Rappel, W.-J., J. Cryst. Growth, 174, 54 (1997)
[24] Karma, A.; Rappel, W.-J., Phys. Rev. E, 57, 4323 (1998)
[25] Karma, A.; Lee, Y. H.; Plapp, M., Phys. Rev. E, 61, 3996 (2000)
[26] Jeong, J.-H.; Goldenfield, N.; Dantzig, J. A., Phys. Rev. E, 64, 041602 (2001)
[27] Schmidt, A., J. Comp. Phys., 125, 293 (1996)
[28] Aliabadi, S. K.; Tezduyar, T. E., Int. J. Numer. Methods Fluids, 21, 783 (1995)
[29] Zhou, H.; Derby, J. J., Int. J. Numer. Methods Fluids, 36, 841 (2001)
[30] Wheeler, A. A.; McFadden, G. B., Eur. J. Appl. Math., 7, 367 (1996)
[31] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes in C (1997), Cambridge University Press: Cambridge University Press Cambridge
[32] Int. J. Supercomput. Appl. High Perform. Comput., 8, 159 (1994)
[33] W. George, C-DParLib Reference Manual; W. George, C-DParLib Reference Manual
[34] W. George, C-DParLib User’s Guide; W. George, C-DParLib User’s Guide
[35] The VT-CAVE; The VT-CAVE
[36] Provatas, N.; Goldenfeld, N.; Dantzig, J., J. Comp. Phys., 148, 265 (1999)
[37] OpenDX: The Open Source Software Project Based on IBM’s Visualization Data Explorer; OpenDX: The Open Source Software Project Based on IBM’s Visualization Data Explorer
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.