×

A finite element method for unstructured grid smoothing. (English) Zbl 1039.65086

Summary: The finite element method is applied to grid smoothing for two-dimensional planar geometry. The coordinates of the grid nodes satisfy two quasi-linear elliptic equations in the form of Laplace equations in a Riemann space. By forming a Dirichlet boundary value problem, the proposed method is applicable to both structured and unstructured grids. The Riemannian metric, acting as a driving force in the grid smoothing, is computed iteratively beginning with the metric of the unsmoothed grid. Smoothing is achieved by computing the metric tensor on the dual mesh elements, which incorporates the influence of neighbor elements. Numerical examples of this smoothing methodology, demonstrating the efficiency of the proposed approach, are presented.

MSC:

65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
58J05 Elliptic equations on manifolds, general theory

Software:

BPKit; Triangle
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Thompson, J. F.; Weatherill, N. P., Fundamental concepts and approaches, (Thompson, J. F.; Soni, B. K.; Weatherill, N. P., Handbook of Grid Generation (1999), CRC Press: CRC Press Boca Raton, FL), 1-30, (Chapter 1)
[2] Frey, P. J.; George, P.-L., Mesh Generation: Application to Finite Elements (2000), Hermes Science: Hermes Science Oxford
[3] Springer, G., Introduction to Riemann Surfaces (1981), Chelsea: Chelsea New York · Zbl 0501.30039
[4] Frankel, T., The Geometry of Physics: An Introduction (1997), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0888.58077
[5] Lautersztajn, N.; Samuelsson, A., On application of differential geometry to computational mechanics, Comput. Methods Appl. Eng., 150, 1-4, 25-38 (1997) · Zbl 0926.74117
[6] P.M. Knupp, Winslow smoothing on two-dimensional unstructured meshes, in: Seventh International Meshing Roundtable, Sandia National Laboratory, 1998, pp. 449-457; P.M. Knupp, Winslow smoothing on two-dimensional unstructured meshes, in: Seventh International Meshing Roundtable, Sandia National Laboratory, 1998, pp. 449-457 · Zbl 0958.65510
[7] Allievi, A.; Calisal, S., Application of Bubnov-Galerkin formulation to orthogonal grid generation, J. Comput. Phys., 98, 1, 163-173 (1992) · Zbl 0746.65081
[8] R.E. Tipton, Grid optimization by equipotential relaxation, Tech. Rep., Lawrence Livermore National Laboratory, July 1992; R.E. Tipton, Grid optimization by equipotential relaxation, Tech. Rep., Lawrence Livermore National Laboratory, July 1992
[9] Knupp, P.; Steinberg, S., Fundamentals of Grid Generation (1994), CRC Press: CRC Press Boca Raton, FL · Zbl 0855.65123
[10] Thompson, J. F.; Thames, F. C.; Mastin, C. W., Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies, J. Comput. Phys., 15, 299-319 (1974) · Zbl 0283.76011
[11] Struik, D. J., Lectures in Classical Differential Geometry (1961), Dover: Dover New York · Zbl 0041.48603
[12] Fock, V., The Theory of Space Time and Gravitation (1959), Pergamon Press: Pergamon Press New York · Zbl 0085.42301
[13] Thompson, J. F.; Thames, F. C.; Mastin, C. W., TOMCAT - a code for numerical generation of boundary-fitted curvilinear coordinate systems on fields containing any number of arbitrary two-dimensional bodies, J. Comput. Phys., 24, 274-302 (1977) · Zbl 0363.76001
[14] Becker, E. B.; Carey, G. F.; Oden, J. T., Finite Elements: An Introduction, vol. 1 (1981), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0459.65070
[15] Reddy, J. N., An Introduction to the Finite Element Method (1993), McGraw-Hill: McGraw-Hill Boston · Zbl 0561.65079
[16] Landau, L. D.; Lifshitz, E. M., The Classical Theory of Fields (1975), Pergamon Press: Pergamon Press New York · Zbl 0178.28704
[17] Castillo, J. E.; Steinberg, S.; Roache, P., On the folding of numerically generated grids: use of a reference grid, Comm. Appl. Num. Methods, 4, 471-481 (1988) · Zbl 0651.65084
[18] Cai, X.-C.; Gropp, W. D.; Keyes, D. E.; Melvin, R. G.; Young, D. P., Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation, SIAM J. Sci. Comput., 19, 1, 246-265 (1998) · Zbl 0917.76035
[19] A. Stagg, G. Hansen, A. Zardecki, Comments on applying Newton’s method to nonlinear finite element problems, Tech. Rep. LAUR-03-6657, Los Alamos National Laboratory, September 2003; A. Stagg, G. Hansen, A. Zardecki, Comments on applying Newton’s method to nonlinear finite element problems, Tech. Rep. LAUR-03-6657, Los Alamos National Laboratory, September 2003
[20] Chow, E.; Heroux, M. A., An object-oriented framework for block preconditioning, ACM Trans. Math. Soft., 24, 159-183 (1998) · Zbl 0930.65052
[21] Shewchuk, J. R., Delaunay refinement algorithms for triangular mesh generation, Comput. Geometry Theory Appl., 22, 1-3, 21-74 (2002) · Zbl 1016.68139
[22] Knupp, P.; Margolin, L.; Shashkov, M., Reference Jacobian optimization-based rezone strategies for arbitrary Lagrangian Eulerian methods, J. Comput. Phys., 176, 1, 93-128 (2002) · Zbl 1120.76340
[23] Thompson, J. F.; Warsi, Z. U.A.; Mastin, C. W., Numerical Grid Generation: Foundations and Applications (1985), North Holland: North Holland New York, NY · Zbl 0598.65086
[24] Carey, G. F., Computational Grids: Generation, Adaptation, and Solution Strategies (1997), Taylor & Francis: Taylor & Francis Washington, DC · Zbl 0955.74001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.