×

Cayley continuants. (English) Zbl 1089.15010

Author’s summary: In 1858 Cayley considered a particular kind of tridiagonal determinants (or continuants). By a direct inspection of the first cases, he conjectured an identity expressing these determinants in terms of certain other determinants considered by Sylvester in 1854. Then Cayley proved the conjectured identity by induction but, as he wrote, he felt unsatisfied with his proof. The main aim of this paper is to give a straightforward proof of Cayley’s identity using the method of formal series. Moreover we use this method and umbral calculus techniques to obtain several other identities.
Cayley continuants appear in several contexts and in particular in enumerative combinatorics. Mittag-Leffler polynomials, Meixner polynomials of the first kind, the falling and the raising factorials are just few instances of these continuants. They can be interpreted in terms of weighted permutations. Moreover, as we prove in this paper, they also appear in the context of Hankel determinants generated by certain Catalan-like numbers.

MSC:

15A15 Determinants, permanents, traces, other special matrix functions
05A40 Umbral calculus
05A15 Exact enumeration problems, generating functions

Software:

testmatrix; OEIS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aigner, M., Combinatorial Theory (1979), Springer: Springer New York · Zbl 0415.05001
[2] Aigner, M., Catalan-like numbers and determinants, J. Combin. Theory Ser. A, 87, 33-51 (1999) · Zbl 0929.05004
[3] Aigner, M., Catalan and other numbers: a recurrent theme, (Algebraic Combinatorics and Computer Science (2001), Springer Italia: Springer Italia Milan), 347-390 · Zbl 0971.05002
[4] C. Banderier, S. Schwer, Why Delannoy’s numbers?, May 2002, Lattice Paths’02.; C. Banderier, S. Schwer, Why Delannoy’s numbers?, May 2002, Lattice Paths’02. · Zbl 1074.01012
[5] Bergeron, F.; Labelle, G.; Leroux, P., Combinatorial Species and Tree-like Structures (1998), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0888.05001
[6] Brouwer, A. E.; Cohen, A. M.; Neumaier, A., Distance-Regular Graphs (1989), Springer: Springer Berlin · Zbl 0747.05073
[7] Cayley, A., On the determination of the value of a certain determinant, Quart. J. Math., ii, 163-166 (1858), (Collected Mathematics Papers, Vol. 3, Cambridge University press, Cambridge, 1919, pp. 120-123)
[8] Clement, P. A., A class of triple-diagonal matrices for test purposes, SIAM Rev., 1, 50-52 (1959) · Zbl 0117.14202
[9] Comtet, L., Advanced Combinatorics (1974), Reidel: Reidel Dordrecht-Holland, Boston
[10] Edelman, A.; Kostlan, E., The road from Kac’s matrix to Kac’s random polynomials, (Lewis, J., Proc. of the Fifth SIAM Conf. on Applied Linear Algebra (1994), SIAM: SIAM Philadelpia), 503-507 · Zbl 0817.15014
[11] Flajolet, P., Combinatorial aspects of continued fractions, Discrete Math., 32, 125-161 (1980) · Zbl 0445.05014
[12] Flajolet, P.; Guillemin, F., The formal theory of birth-and-death processes, lattice path combinatorics and continued fractions, Adv. Appl. Probab., 32, 750-778 (2000) · Zbl 0966.60069
[13] Foata, D.; Labelle, J., Modèles combinatoires pour les polynômes de Meixner, Europ. J. Combin., 4, 305-311 (1983) · Zbl 0545.05010
[14] Goulden, I. P.; Jackson, D. M., Combinatorial Enumeration (1983), Wiley: Wiley New York · Zbl 0519.05001
[15] Hanlon, P., To the Latimer-Macduffee theorem and beyond!, Linear Algebra Appl., 280, 21-37 (1998) · Zbl 0934.60059
[16] Hautus, M. L.J.; Klarner, D. A., The diagonal of a double power series, Duke Math. J., 38, 229-235 (1971) · Zbl 0214.08304
[17] Hess, F. G., Alternative solution to the Ehrenfest problem, Amer. Math. Monthly, 61, 323-327 (1954) · Zbl 0055.37004
[18] N. Higham, The Test Matrix Toolbox for Matlab, Numerical Analysis Report No. 237, University of Manchester, England, December 1993.; N. Higham, The Test Matrix Toolbox for Matlab, Numerical Analysis Report No. 237, University of Manchester, England, December 1993.
[19] Joyal, A., Une théorie combinatoire des séries formelles, Adv. Math., 42, 1-82 (1981) · Zbl 0491.05007
[20] Kac, M., Random walks and the theory of Brownian motion, Amer. Math. Monthly, 54, 369-390 (1947) · Zbl 0031.22604
[21] Muir, T., The Theory of Determinants in the Historical Order of Development (1960), Dover: Dover New York · JFM 45.1242.04
[22] Roman, S., The umbral calculus, Pure and Applied Mathematics, Vol. 111 (1984), Academic Press: Academic Press New York · Zbl 0536.33001
[23] Roman, S. M.; Rota, G.-C., The umbral calculus, Adv. Math., 27, 95-188 (1978) · Zbl 0375.05007
[24] Rota, G.-C., The number of partitions of a set, Amer. Math. Monthly, 71, 498-504 (1964) · Zbl 0121.01803
[25] Shapiro, L. W.; Getu, S.; Woan, W. J.; Woodson, L. C., The Riordan group, Discrete Appl. Math., 34, 229-239 (1991) · Zbl 0754.05010
[26] N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Published electronically at http://www.research.att.com/\( \sim;\); N.J.A. Sloane, On-Line Encyclopedia of Integer Sequences, Published electronically at http://www.research.att.com/\( \sim;\) · Zbl 1274.11001
[27] R.P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999.; R.P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999.
[28] R.A. Sulanke, Objects counted by the central Delannoy numbers, J. Integer Seq. 6 (1) (2003) Article 03.1.5.; R.A. Sulanke, Objects counted by the central Delannoy numbers, J. Integer Seq. 6 (1) (2003) Article 03.1.5. · Zbl 1012.05008
[29] Sylvester, J. J., Théorème sur les déterminants de M. Sylvester, Nouv. Ann. Math., xiii, 305 (1854), (Collected Mathematics Papers, vol. 2, Cambridge University Paper, Cambridge, 1908, p. 128.)
[30] Taussky, O.; Todd, J., Another look at a matrix of Mark Kac, Linear Algebra Appl., 150, 341-360 (1991) · Zbl 0727.15010
[31] Vein, R.; Dale, P., Determinants and Their Applications in Mathematical Physics (1999), Springer: Springer New York · Zbl 0913.15005
[32] Zeng, J., Weighted derangements and the linearization coefficients of orthogonal sheffer polynomials, Proc. London Math. Soc., 65, 1-22 (1992) · Zbl 0770.05006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.