×

An integrated model of glucose and galactose metabolism regulated by the GAL genetic switch. (English) Zbl 1102.92032

Summary: Glucose and galactose are two alternative carbon sources in yeast for energy production, producing CO\(_2\) and alcohol. The yeast needs to switch from glucose to galactose metabolism as required by transcriptional regulation of the respective metabolic enzymes. This regulation is achieved mainly through the GAL genetic switch, in addition to the glucose repression mechanism. This study integrates the two metabolic pathways with the genetic regulatory circuit using the GEPASI 3.30 simulation environment, and investigates the model behavior under various nutrient conditions. Our system is successful in achieving transcriptional upregulation of the galactose metabolizing enzymes as required. Under high glucose and high galactose concentrations, the in silico yeast chooses to metabolize glucose first, after which it resorts to using the galactose available. We also show what the preferred storage macromolecules are in different metabolic pathways.

MSC:

92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
92-08 Computational methods for problems pertaining to biology
92C40 Biochemistry, molecular biology

Software:

GEPASI
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aksan Kurnaz, I., A kinetic analysis of RSK2 and Elk-1 interaction on the serum response element and implications for cellular engineering, Biotech. Bioeng., 88, 7, 890-900 (2004)
[2] Aksan, I.; Kurnaz, M. L., A computer-based model for the regulation of MAPK activation, J. Rec. Signal Transduc., 23, 2-3, 197-209 (2003)
[3] Cruzalegui, F. H.; Cano, E.; Treisman, R., ERK activation induces phosphorylation of Elk-1 at multiple S/T-P motifs to high stoichiometry, Oncogene, 18, 7948-7957 (1999)
[4] Diderich, J. A.; Schepper, M.; van Hoek, P.; Lutfik, M. A.H.; van Dijken, P.; Pronk, J. T.; Klaassen, P.; Boelens, H. F.M.; de Mattus, M. J.T.; van Dam, K.; Kruckeberg, A. L., Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of S. Cerevisiae, J. Biol. Chem., 274, 22, 15350-15359 (1999)
[5] Emir, U. E.; Aksan Kurnaz, I., An integrated model for melanocyte-specific gene expression and melanogenesis, Signal Transdu.: Rec. Mediators Genes, 3, 5-6, 209-217 (2003)
[6] Ferguson, H. A.; Kugel, J. F.; Goodrich, J. A., Kinetic and mechanistic analysis of the RNA polymerase II transcription reaction at the humen interleukin II promoter, J. Mol. Biol., 314, 5, 993-1006 (2001)
[7] Fu, L.; Bounelis, P.; Dey, N.; Browne, B. L.; Marchase, R. B.; Bedwell, D. M., The posttranslational modification of phosphoglucomutase is regulated by galactose induction and glucose repression in Saccharomyces cerevisiae, J. Bacteriol., 177, 11, 3087-3094 (1995)
[8] Heinisch, J. J.; Boles, E.; Timpel, C., A yeast phosphofructokinase insensitive to fructose-2, 6-bisphosphate, J. Biol. Chem., 271, 27, 15928-15933 (1996)
[9] Hynne, F.; Danø, S.; Sørensen, P. G., Full-scale model of glycolysis in Saccharomyces cerevisiae, Biophys. Chem., 94, 121-163 (2001)
[10] Johnston, M.; Flick, J. S.; Pexton, T., Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae, Mol. Cell. Biol., 14, 6, 3834-3841 (1994)
[11] Jonsen, M. D.; Petersen, J. M.; Xu, Q. P.; Graves, B. J., Characterization of the cooperative binding of inhibitory sequences in Ets-1, Mol. Cell. Biol., 16, 2065-2073 (1996)
[12] Kasahara, T.; Kasahara, M., Three aromatic residues critical for galactose transport in Gal2, J. Biol. Chem., 275, 5, 4422-4428 (2000)
[13] Kroschewski, H.; Ortner, S.; Steipe, B.; Scheiner, O.; Wiedermann, G.; Duchene, M., Differences in substrate specificity and kinetic properties of the recombinant hexokinases HXK1 and HXK2 from Entamoeba histolytica, Mol. Biochem. Parasitol., 105, 71-80 (2000)
[14] Majumdar, S.; Ghatak, J.; Mukherji, S.; Bhattacharjee, H.; Bhaduri, A., UDPgalactose 4-epimerase from Saccharomyces cerevisiae. A bifunctional enzyme with aldose 1-epimerase activity, Eur. J. Biochem., 271, 4, 753-759 (2004)
[15] McCartney, R. R.; Schmidt, M. C., Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit, J. Biol. Chem., 276, 39, 36460-36466 (2001)
[16] Mendes, P., GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems, Comput. Appl. Biosci., 9, 563-571 (1993)
[17] Mendes, P., Biochemistry by numbers: simulation of biochemical pathways with Gepasi 3, Trends Biochem. Sci., 22, 361-363 (1997)
[18] Mendes, P.; Kell, D., Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation, Bioinformatics, 14, 869-883 (1998)
[19] Oh, D.; Hopper, J. E., Transcription of a yeast phosphoglucomutase isozyme gene is galactose inducible and glucose repressible, Mol. Cell. Biol., 10, 4, 1415-1422 (1990)
[20] Ostergaard, S.; Walløe, K. O.; Gomes, C. S.G.; Olsson, L.; Nielsen, J., The impact of GAL6, GAL80 and MIG1 on glucose control of the GAL system in Saccharomyces cerevisiae, FEMS Yeast Res., 1, 47-55 (2001)
[21] Ozcan, S., Two different signals regulate repression and induction of gene expression by glucose, J. Biol. Chem., 277, 49, 46993-46997 (2002)
[22] Ozcan, S.; Johnston, M., Function and regulation of yeast hexose transporters, Microbiol. Mol. Biol. Rev., 63, 3, 554-569 (1999)
[23] Peng, G.; Hopper, J. E., Gene activation by interaction of an inhibitor with a cytoplasmic signaling protein, Proc. Natl. Acad. Sci. U.S.A., 99, 13, 8548-8553 (2002)
[24] Platt, A.; Reece, R. J., The yeast galactose genetic switch is mediated by formation of a Gal4p-Gal80p-Gal3p complex, EMBO J., 17, 14, 4086-4091 (1998)
[25] Podesta, F. E.; Plaxton, W. C., Fluorescence study of ligand binding to potato tuber pyrophosphate-dependent phosphofructokinase: evidence for competitive binding between fructose-1,6-bisphosphate and fructose-2, 6-bisphosphate, Arch. Biochem. Biophys., 414, 101-107 (2003)
[26] Pritchard, L.; Kell, D. B., Schemes of flux control in a model of Saccharomyces cerevisiae glycolysis, Eur. J. Biochem., 269, 3894-3904 (2002)
[27] Reijenga, K. A.; Snoep, J. L.; Diderich, J. A.; van Verseveld, H. W.; Westerhoff, H. V.; Teusink, B., Control of glycolytic dynamics by hexose transport in Saccharomyces cerevisiae, Biophys. J., 80, 626-634 (2001)
[28] Rolland, F.; de Winde, J. H.; Lemaire, K.; Boles, E.; Thevelein, J. M.; Winderickx, J., Glucose-induced cAMP signaling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process, Molec. Microbiol., 38, 2, 348-358 (2000)
[29] Seiboth, B.; Hofmann, G.; Kubicek, C. P., Lactose metabolism and cellulase production in Hypocrea jecorina: the gal7 gene, encoding galactose-1-phosphate uridylyltransferase, is essential for growth on galactose but not for cellulase induction, Mol. Genet. Genomics, 267, 1, 124-132 (2002)
[30] Shirra, M. K.; Arndt, K. M., Evidence for the involvement of the Glc7-Reg1 phosphatase and the Snf1-Snf4 kinase in the regulation of INO1 transcription in Saccharomyces cerevisiae, Genetics, 152, 1, 73-87 (1999)
[31] Sil, A. K.; Alam, S.; Xin, P.; Ma, L.; Morgan, M.; Lebo, C. M.; Woods, M. P.; Hopper, J. E., The Gal3p-Gal80p-Gal4p transcription switch of yeast: Gal3p destabilizes the Gal80p-Gal4p complex in response to galactose and ATP, Mol. Cell. Biol., 19, 11, 7828-7840 (1999)
[32] Stryer, L., Glycolysis, in Biochemistry (1995), WH Freeman and Co.: WH Freeman and Co. NY, pp. 483-528
[33] Sun, L.; Cui, Z.; Gottlieb, R. L.; Zhang, B., A selected ribozyme catalyzing diverse dipeptide synthesis, Chem. Biol., 9, 5, 619-628 (2002)
[34] Teusink, B.; Passarge, J.; Reijenga, C. A.; Esgalhado, E.; van der Weijden, C. C.; Schepper, M.; Walsh, M. C.; Bakker, B. M.; van Dam, K.; Westerhoff, H. V.; Snoep, J. L., Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes. Testing biochemistry, Eur. J. Biochem., 267, 5313-5329 (2000)
[35] Timson, D. J.; Reece, R. J., Kinetic analysis of the yeast galactokinase, Biochimie, 84, 265-272 (2002)
[36] Venkatesh, K. V.; Bhat, P. J.; Kumar, R. A.; Doshi, P., Quantitative model for Gal4p-mediated expression of the galactose/melibiose regulon in Saccharomyces cerevisiae, Biotechnol. Prog., 15, 51-57 (1999)
[37] Verma, M.; Bhat, P. J.; Venkatesh, K. V., Quantitative analysis of GAL genetic switch of Saccharomyces cerevisiae reveals that nucleocytoplasmic shuttling of Gal80p results in a highly sensitive response to galactose, J. Biol. Chem., 278, 49, 48764-48769 (2003)
[38] Yano, K.; Fukasawa, T., Galactose-dependent reversible interaction of Gal3p with Gal80p in the induction pathway of Gal4p-activated genes of Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U.S.A., 94, 5, 1721-1726 (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.