×

Real-time motion planning for multibody systems. (English) Zbl 1138.70003

Summary: The solution of constrained motion planning is an important task in a wide number of application fields. The real-time solution of such a problem, formulated in the framework of optimal control theory, is a challenging issue. We prove that a real-time solution of the constrained motion planning problem for multibody systems is possible for practical real-life applications on standard personal computers.
The proposed method is based on an indirect approach that eliminates the inequalities via penalty formulation and solves the boundary value problem by a combination of finite differences and Newton-Broyden algorithm. Two application examples are presented to validate the method and for performance comparisons. Numerical results show that the approach is real-time capable if the correct penalty formulation and settings are chosen.

MSC:

70E55 Dynamics of multibody systems
70-08 Computational methods for problems pertaining to mechanics of particles and systems

Software:

NewtonLib; COLROW; ARCELO
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Büskens, C.; Knauer, M., Higher order real-time approximations in optimal control of multibody-systems for industrial robots, J. Multibody Syst. Dyn., 15, 85-106 (2006) · Zbl 1145.93034 · doi:10.1007/s11044-006-2364-2
[2] Diehl, M., Findeisen, R., Allgöwer, F.: A stabilizing real-time implementation of nonlinear model predictive control. In: Biegler, L., Ghattas, O., Heinkenschloss, M., Keyes, D., van Bloem Wanders, B. (eds.) Proceedings of Sandia Real-Time PDE Optimization Workshop, Springer-Verlag (in press)
[3] Frazzoli, E., Dahleh, M.A., Feron, E.: Real-time motion planning for agile autonomous vehicles. In: AIAA Guidance, Navigation, and Control Conference and Exhibit. Number 4056 in AIAA (2000) · Zbl 0970.93582
[4] Milam, M.B.: Real-Time Optimal Trajectory Generation for Constrained Dynamical Systems. Dissertation, California Institute of Technology (2003)
[5] Prasanth Kumar, R.; Dasgupta, A.; Kumar, C. S., Real-time optimal motion planning for autonomous underwater vehicles, Ocean Eng., 32, 11-12, 1431-1447 (2005) · doi:10.1016/j.oceaneng.2004.11.010
[6] Bertolazzi, E., Biral, F., Da Lio, M.: Future advanced driver assistance systems based on optimal control: the influence of “risk functions” on overall system behavior and on prediction of dangerous situation. In: Proceedings of IEEE Intelligent Vehicles Symposium, pp. 386-390 (2004)
[7] Biral, F., Da Lio, M.: Modelling drivers with the optimal manoeuvre method. In: ATA 2001, 7th International Conference and Exhibition (2001)
[8] Biral, F., Da Lio, M., Bertolazzi, E.: Combining safety margins and user preferences into a driving criterion for optimal control-based computation of reference maneuvers for an ADAS of the next generation. In: Proceedings of IEEE Intelligent Vehicles Symposium, pp. 36-41 (2005)
[9] Bottasso, C.; Chang, C. S.; Croce, A.; Leonello, D.; Riviello, L., Adaptive planning and tracking of trajectories for the simulation of maneuvers with multibody models, Comput. Methods Appl. Mech. Eng., 195, 50-51, 7052-7072 (2006) · Zbl 1120.70324 · doi:10.1016/j.cma.2005.03.011
[10] Petti, S., Fraichard, T.: Safe motion planning in dynamic environments. In: Proceedings of the IEEE-RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB (2005)
[11] Bruce, J., Veloso, M.: Real-time randomized path planning for robot navigation. In: Proceedings of the IEEE-RSJ Intelligent Robots and Systems, pp. 2383-2388 (2002)
[12] LaValle, S. M.; Kuffner, J. J., Randomized kinodynamic planning, Int. J. Robot. Res., 20, 5, 378-400 (2001) · doi:10.1177/02783640122067453
[13] Cerven, W. T.; Bullo, F.; Coverstone, V. L., Vehicle motion planning with time-varying constraints, J. Guid. Control Dyn., 27, 3, 506-509 (2004) · doi:10.2514/1.4306
[14] Cuthrell, J.; Biegler, L., Simultaneous optimization and solution methods for batch reactor control profiles, Comput. Chem. Eng., 13, 1-2, 49-62 (1989) · doi:10.1016/0098-1354(89)89006-4
[15] von Stryk, O.; Bulirsch, R., Direct and indirect methods for trajectory optimization, Ann. Oper. Res., 37, 1-4, 357-373 (1992) · Zbl 0784.49023 · doi:10.1007/BF02071065
[16] Veeraklaew, T.; Agrawal, S. K., New computational framework for trajectory optimization of high-order dynamic systems, J. Guid. Control Dyn., 24, 2, 228-236 (2001)
[17] Cervantes, A. M.; Biegler, L., Optimization strategies for dynamic systems, Encyclopedia of Optimization, vol. 4, 216-227 (2001), Norwell, MA: Kluwer, Norwell, MA
[18] Betts, J. T., Survey of numerical methods for trajectory optimization, J. Guid. Control Dyn., 21, 2, 193-207 (1998) · Zbl 1158.49303 · doi:10.2514/2.4231
[19] Biegler, L.; Cervantes, A. M.; Wächter, A., Advances in simultaneous strategies for dynamic process optimization, Chem. Eng. Sci., 57, 4, 575-593 (2002) · doi:10.1016/S0009-2509(01)00376-1
[20] Bertolazzi, E.; Biral, F.; Da Lio, M., Symbolic-numeric indirect method for solving optimal control problems for large multibody, the racing vehicle example, J. Multibody Syst. Dyn., 13, 233-252 (2005) · Zbl 1104.70003 · doi:10.1007/s11044-005-3987-4
[21] Bertolazzi, E.; Biral, F.; Da Lio, M., Symbolic-numeric efficient solution of optimal control problems for multibody systems, J. Comput. Appl. Math., 185, 2, 404-421 (2006) · Zbl 1077.65070 · doi:10.1016/j.cam.2005.03.019
[22] Dennis, J. E. Jr.; Schnabel, R. B., Numerical methods for unconstrained optimization and nonlinear equations, Classics in Applied Mathematics, vol. 16 (1996), Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA · Zbl 0847.65038
[23] Gould, N.; Orban, D.; Toint, P., Numerical methods for large-scale nonlinear optimization, Acta Numer., 14, 299-361 (2005) · Zbl 1119.65337 · doi:10.1017/S0962492904000248
[24] Nocedal, J.; Wright, S. J., Numerical optimization, Springer Series in Operations Research (1999), New York: Springer-Verlag, New York · Zbl 0930.65067
[25] Bouaricha, A.; Schnabel, R. B., Tensor methods for large sparse systems of nonlinear equations, Math. Program. A, 82, 3, 377-400 (1998) · Zbl 0951.65046 · doi:10.1007/BF01580076
[26] Bader, B. W., Tensor-Krylov methods for solving large-scale systems of nonlinear equations, SIAM J. Numer. Anal., 43, 3, 1321-1347 (2005) · Zbl 1093.65050 · doi:10.1137/040607095
[27] Schnabel, R. B.; Frank, P. D., Tensor methods for nonlinear equations, SIAM J. Numer. Anal., 21, 5, 815-843 (1984) · Zbl 0562.65029 · doi:10.1137/0721054
[28] Potra, F. A.; Shi, Y., Efficient line search algorithm for unconstrained optimization, J. Optim. Theory Appl., 85, 3, 677-704 (1995) · Zbl 0831.90106 · doi:10.1007/BF02193062
[29] Shi, Z. J.; Shen, J., Convergence of descent method with new line search, J. Appl. Math. Comput., 20, 1-2, 239-254 (2006) · Zbl 1137.90674 · doi:10.1007/BF02831936
[30] Deuflhard, P., Newton methods for nonlinear problems, Springer Series in Computational Mathematics, vol. 35 (2004), Berlin: Springer-Verlag, Berlin · Zbl 1056.65051
[31] Deuflhard, P.; Heindl, G., Affine invariant convergence theorems for Newton’s method and extensions to related methods, SIAM J. Numer. Anal., 16, 1, 1-10 (1979) · Zbl 0395.65028 · doi:10.1137/0716001
[32] Grippo, L.; Lampariello, F.; Lucidi, S., A nonmonotone line search technique for Newton’s method, SIAM J. Numer. Anal., 23, 4, 707-716 (1986) · Zbl 0616.65067 · doi:10.1137/0723046
[33] Amodio, P.; Cash, J. R.; Roussos, G.; Wright, R. W.; Fairweather, G.; Gladwell, I.; Kraut, G. L.; Paprzycki, M., Almost block diagonal linear systems: sequential and parallel solution techniques, and applications, Numer. Linear Algebra Appl., 7, 5, 275-317 (2000) · Zbl 1051.65018 · doi:10.1002/1099-1506(200007/08)7:5<275::AID-NLA198>3.0.CO;2-G
[34] Amodio, P.; Paprzycki, M., A cyclic reduction approach to the numerical solution of boundary value ODEs, SIAM J. Sci. Comput., 18, 1, 56-68 (1997) · Zbl 0949.65080 · doi:10.1137/S1064827595287225
[35] Paprzychi, M.; Gladwell, I., Using level 3 BLAS to solve almost block diagonal systems, Parallel Processing for Scientific Computing, Houston, TX, 1991, 52-62 (1992), Philadelphia, PA: SIAM, Philadelphia, PA · Zbl 0788.65032
[36] Díaz, J. C.; Keast, G.; Keast, P., Algorithm 603: Colrow and arceco: Fortran packages for solving certain almost block diagonal linear systems by modified alternate row and column elimination, ACM Trans. Math. Softw. (TOMS), 9, 3, 376-380 (1983) · Zbl 0516.65013 · doi:10.1145/356044.356054
[37] Brown, P. N.; Saad, Y., Hybrid Krylov methods for nonlinear systems of equations, SIAM J. Sci. Statist. Comput., 11, 3, 450-481 (1990) · Zbl 0708.65049 · doi:10.1137/0911026
[38] Bellavia, S.; Morini, B., A globally convergent Newton—GMRES subspace method for systems of nonlinear equations, SIAM J. Sci. Comput., 23, 3, 940-960 (2001) · Zbl 0998.65053 · doi:10.1137/S1064827599363976
[39] Broyden, C. G.; Dennis, J. E. Jr.; Moré, J. J., On the local and superlinear convergence of quasi-Newton methods, J. Inst. Math. Appl., 12, 223-245 (1973) · Zbl 0282.65041 · doi:10.1093/imamat/12.3.223
[40] Gay, D. M., Some convergence properties of Broyden’s method, SIAM J. Numer. Anal., 16, 4, 623-630 (1979) · Zbl 0453.65034 · doi:10.1137/0716047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.