×

Object recognition using a generalized robust invariant feature and Gestalt’s law of proximity and similarity. (English) Zbl 1129.68485

Summary: We propose a new context-based method for object recognition. We first introduce a neuro-physiologically motivated visual part detector. We found that the optimal form of the visual part detector is a combination of a radial symmetry detector and a corner-like structure detector. A general context descriptor, named G-RIF (Generalized-Robust Invariant Feature), is then proposed, which encodes edge orientation, edge density and hue information in a unified form. Finally, a context-based voting scheme is proposed. This proposed method is inspired by the function of the human visual system, called figure-ground discrimination. We use the proximity and similarity between features to support each other. The contextual feature descriptor and contextual voting method, which use contextual information, enhance the recognition performance enormously in severely cluttered environments.

MSC:

68T10 Pattern recognition, speech recognition

Software:

PCA-SIFT; COIL-100; SIFT
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Lindeberg, T., Detecting salient blob-like image structures and their scales with a scale-space primal sketch: a method for focus-of-attention, Int. J. Comput. Vision, 11, 3, 283-318 (1993)
[2] A. Shokoufandeh, I. Marsic, S.J. Dickinson, View-based object matching, in: International Conference on Computer Vision, 1998, pp. 588-595.; A. Shokoufandeh, I. Marsic, S.J. Dickinson, View-based object matching, in: International Conference on Computer Vision, 1998, pp. 588-595.
[3] Schmid, C.; Mohr, R.; Bauckhage, C., Evaluation of interest point detectors, Int. J. Comput. Vision, 37, 2, 151-172 (2000) · Zbl 0985.68625
[4] Mikolajczyk, K.; Schmid, C., Scale & affine invariant interest point detectors, Int. J. Comput. Vision, 60, 1, 63-86 (2004)
[5] Lowe, D. G., Distinctive image features from scale-invariant keypoints, Int. J. Comput. Vision, 60, 2, 91-110 (2004)
[6] Mikolajczyk, K.; Schmid, C., A performance evaluation of local descriptors, IEEE Trans. Pattern Anal. Mach. Intell., 27, 10, 1615-1630 (2005)
[7] Y. Ke, R. Sukthankar, PCA-SIFT: a more distinctive representation for local image descriptors, in: IEEE Computer Vision and Pattern Recognition or CVPR, 2004, pp. 506-513.; Y. Ke, R. Sukthankar, PCA-SIFT: a more distinctive representation for local image descriptors, in: IEEE Computer Vision and Pattern Recognition or CVPR, 2004, pp. 506-513.
[8] Tico, M.; Kuosmanen, P., Fingerprint matching using an orientation-based minutia descriptor, IEEE Trans. Pattern Anal. Mach. Intell., 25, 8, 1009-1014 (2003)
[9] C. Schmid, A structured probabilistic model for recognition, In IEEE Computer Vision and Pattern Recognition or CVPR, vol. II, June 1999, pp. 485-490.; C. Schmid, A structured probabilistic model for recognition, In IEEE Computer Vision and Pattern Recognition or CVPR, vol. II, June 1999, pp. 485-490.
[10] R. Fergus, P. Perona, A. Zisserman, Object class recognition by unsupervised scale-invariant learning, in: IEEE Computer Vision and Pattern Recognition or CVPR, 2003, pp. 264-271.; R. Fergus, P. Perona, A. Zisserman, Object class recognition by unsupervised scale-invariant learning, in: IEEE Computer Vision and Pattern Recognition or CVPR, 2003, pp. 264-271.
[11] P. Moreels, M. Maire, P. Perona, Recognition by probabilistic hypothesis construction, in: European Conference on Computer Vision, 2004, pp. 55-68.; P. Moreels, M. Maire, P. Perona, Recognition by probabilistic hypothesis construction, in: European Conference on Computer Vision, 2004, pp. 55-68. · Zbl 1098.68822
[12] A. Stein, M. Hebert, Incorporating background invariance into feature-based object recognition, in: Workshop on Applications of Computer Vision (WACV’05), 2005, pp. 37-44.; A. Stein, M. Hebert, Incorporating background invariance into feature-based object recognition, in: Workshop on Applications of Computer Vision (WACV’05), 2005, pp. 37-44.
[13] S. Kumar, M. Hebert, A hierarchical field framework for unified context-based classification, in: International Conference on Computer Vision, 2005, pp. 1284-1291.; S. Kumar, M. Hebert, A hierarchical field framework for unified context-based classification, in: International Conference on Computer Vision, 2005, pp. 1284-1291.
[14] B. Leibe, A. Leonardis, B. Schiele, Combined object categorization and segmentation with an implicit shape model, in: Workshop on Statistical Learning in Computer Vision, 2004.; B. Leibe, A. Leonardis, B. Schiele, Combined object categorization and segmentation with an implicit shape model, in: Workshop on Statistical Learning in Computer Vision, 2004.
[15] S.X. Yu, J. Shi, Object-specific figure-ground segregation, in: IEEE Computer Vision and Pattern Recognition or CVPR, 2003, pp. 39-45.; S.X. Yu, J. Shi, Object-specific figure-ground segregation, in: IEEE Computer Vision and Pattern Recognition or CVPR, 2003, pp. 39-45.
[16] A. Torralba, K.P. Murphy, W.T. Freeman, M.A. Rubin, Context-based vision system for place and object recognition, in: International Conference on Computer Vision, 2003, pp. 273-280.; A. Torralba, K.P. Murphy, W.T. Freeman, M.A. Rubin, Context-based vision system for place and object recognition, in: International Conference on Computer Vision, 2003, pp. 273-280.
[17] T. Serre, L. Wolf, T. Poggio, Object recognition with features inspired by visual cortex, in: IEEE Computer Vision and Pattern Recognition or CVPR, 2005.; T. Serre, L. Wolf, T. Poggio, Object recognition with features inspired by visual cortex, in: IEEE Computer Vision and Pattern Recognition or CVPR, 2005.
[18] Ringach, D. L., Spatial structure and symmetry of simple-cell receptive field in macaque primary visual cortex, J. Neurophysiol., 88, 455-463 (2001)
[19] Gawne, T. J.; Martin, J. M., Responses of primate visual cortical V4 neurons to simultaneously presented stimuli, J. Neurophysiol., 88, 1128-1135 (2002)
[20] Boynton, G. M., Adaptation and attentional selection, Nature Neurosci., 7, 1, 8-10 (2004)
[21] O. Chomat, Vincent Colin de Verdière, D. Hall, J. L. Crowley, Local scale selection for gaussian based description techniques, in: European Conference on Computer Vision, 2000, pp. 117-133.; O. Chomat, Vincent Colin de Verdière, D. Hall, J. L. Crowley, Local scale selection for gaussian based description techniques, in: European Conference on Computer Vision, 2000, pp. 117-133.
[22] R.H. Wurtz, E.R. Kandel, Perception of motion, depth and form, Principles Neural Sci. 2000, 548-571.; R.H. Wurtz, E.R. Kandel, Perception of motion, depth and form, Principles Neural Sci. 2000, 548-571.
[23] M. Kouh, M. Riesenhuber, Investigating shape representation in area V4 with hmax: orientation and grating selectivities, Technical Report AIM2003-021, Massachusetts Institute of Technology, 2003.; M. Kouh, M. Riesenhuber, Investigating shape representation in area V4 with hmax: orientation and grating selectivities, Technical Report AIM2003-021, Massachusetts Institute of Technology, 2003.
[24] S. Mahamud, M. Hebert, The optimal distance measure for object detection, in: IEEE Computer Vision and Pattern Recognition or CVPR, 2003.; S. Mahamud, M. Hebert, The optimal distance measure for object detection, in: IEEE Computer Vision and Pattern Recognition or CVPR, 2003.
[25] K. Okada, D. Comaniciu, Scale selection for anisotropic scale-space: application to volumetric tumor characterization, in: IEEE Computer Vision and Pattern Recognition or CVPR, 2004, pp. 594-601.; K. Okada, D. Comaniciu, Scale selection for anisotropic scale-space: application to volumetric tumor characterization, in: IEEE Computer Vision and Pattern Recognition or CVPR, 2004, pp. 594-601.
[26] Pasupathy, A.; Connor, C. E., Shape representation in area V4: position-specific tuning for boundary conformation, J. Neurophysiol., 86, 5, 2505-2519 (2001)
[27] Reisfeld, D.; Wolfson, H.; Yeshurun, Y., Context-free attentional operators: the generalized symmetry transform, Int. J. Comput. Vision, 14, 2, 119-130 (1995)
[28] Latecki, L. J.; Lakämper, R., Convexity rule for shape decomposition based on discrete contour evolution, Comput. Vision Image Understanding, 73, 3, 441-454 (1999)
[29] Loy, G.; Zelinsky, A., Fast radial symmetry transform for detecting points of interest, IEEE Trans. Pattern Anal. Mach. Intell., 25, 8, 959-973 (2003)
[30] Belongie, S.; Malik, J.; Puzicha, J., Shape matching and object recognition using shape contexts, IEEE Trans. Pattern Anal. and Mach. Intell., 24, 24, 509-522 (2002)
[31] Schiele, B.; Crowley, J. L., Recognition without correspondence using multidimensional receptive field histograms, Int. J. Comput. Vision, 36, 1, 31-50 (2000)
[32] J.V. Lucas, W.V. Piet, Estimators for orientation and anisotropy in digitized images, in: 1st Conference on Advanced School for Computing and Imaging (ASCI), 1995, pp. 442-450.; J.V. Lucas, W.V. Piet, Estimators for orientation and anisotropy in digitized images, in: 1st Conference on Advanced School for Computing and Imaging (ASCI), 1995, pp. 442-450.
[33] Jafari-Khouzani, K.; Soltanian-Zadeh, H., Radon transform orientation estimation for rotation invariant texture analysis, IEEE Trans. Pattern Anal. Machine Intell., 27, 6, 1004-1008 (2005)
[34] S. Kim, I.-S. Kweon, Biologically motivated perceptual feature: generalized robust invariant feature, in: Asian Conference on Computer Vision, 2006, pp. 305-314.; S. Kim, I.-S. Kweon, Biologically motivated perceptual feature: generalized robust invariant feature, in: Asian Conference on Computer Vision, 2006, pp. 305-314.
[35] C. Wallraven, B. Caputo, A. Graf, Recognition with local features: the kernel recipe, in International Conference on Computer Vision, 2003, pp. 257-264.; C. Wallraven, B. Caputo, A. Graf, Recognition with local features: the kernel recipe, in International Conference on Computer Vision, 2003, pp. 257-264.
[36] L. Zhang, S.Z. Li, Z.Y. Qu, X. Huang, Boosting local feature based classifiers for face recognition, in: CVPR Workshop on Face Processing in Video (FPIV’04), 2004. p. 87.; L. Zhang, S.Z. Li, Z.Y. Qu, X. Huang, Boosting local feature based classifiers for face recognition, in: CVPR Workshop on Face Processing in Video (FPIV’04), 2004. p. 87.
[37] Shokoufandeh, A.; Macrini, D.; Dickinson, S.; Siddiqi, K.; Zucker, S. W., Indexing hierarchical structures using graph spectra, IEEE Trans. Pattern Anal. Mach. Intell., 27, 7, 1125-1140 (2005)
[38] Nayar, S. K.; Nene, S. A.; Murase, H., Real-time 100 object recognition system, IEEE Trans. Pattern Anal. Mach. Intell., 18, 1186-1198 (1996)
[39] S.A. Nene, S.K. Nayar, H. Murase, Columbia object image library (COIL-100). Technical Report, February 1996.; S.A. Nene, S.K. Nayar, H. Murase, Columbia object image library (COIL-100). Technical Report, February 1996.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.