×

Introduction to special issue on RNA. (English) Zbl 1311.92144

Summary: In this introduction to the special issue on RNA, we provide a brief overview of some of the novel and exciting biological discoveries concerning diverse roles played by RNA, and subsequently we give a rapid summary of some algorithmic aspects of RNA structure and alignment. Each of the contributions to this special issue is briefly described.

MSC:

92D20 Protein sequences, DNA sequences
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] RNA: Really new advances. Economist (2007). http://www.economist.com/opinion/displaystory.cfm?story_id=9333471
[2] Ban N., Nissen P., Hansen J., Moore P.B. and Steitz T.A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289: 905
[3] Banerjee A.R., Jaeger J.A. and Turner D.H. (1993). Thermal unfolding of a group I ribozyme: The low-temperature transition is primarily disruption of tertiary structure. Biochemistry 32: 153–163
[4] Barrick J.E., Corbino K.A., Winkler W.C., Nahvi A., Mandal M., Collins J., Lee M., Roth A., Sudarsan N., Jona I., Wickiser J.K. and Breaker R.R. (2004). New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc. Natl. Acad. Sci. USA 101(17): 6421–6426
[5] Bekaert M., Bidou L., Denise A., Duchateau-Nguyen G., Forest J., Froidevaux C., Hatin I., Rousset J. and Termier M. (2003). Towards a computational model for 1 eukaryotic frameshifting sites. Bioinformatics 19: 327–335
[6] Bernhart S.H., Tafer H., Mückstein U., Flamm C., Stadler P.F. and Hofacker I.L. (2006). Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol. Biol. 1(1): 3
[7] Bernstein F.C., Koetzle T.F., Williams G.J.B., Brice M.D., Rogers J.R., Kennard O., Shimanouchi T., Tasumi M. and Meyer E.F. (1977). The Protein Data Bank: a computer-based archival file for macromolecular structures sequence-structure patterns across diverse proteins. J. Mol. Biol. 112: 535–542
[8] Böck A., Forschhammer K., Heider J. and Baron C. (1991). Selenoprotein synthesis: An expansion of the genetic code. Trends Biochem. Sci. 16: 463–467
[9] Cheah M.T., Wachter A., Sudarsan N. and Breaker R.R. (2007). Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447(7143): 497–500
[10] Clote P. (2005). An efficient algorithm to compute the landscape of locally optimal RNA secondary structures with respect to the Nussinov–Jacobson energy model. J. Comput. Biol. 1: 83–101
[11] Clote P., Waldispuhl J., Behzadi B. and Steyaert J.-M. (2005). Energy landscape of k-point mutants of an RNA molecule. Bioinformatics 21(22): 4140–4147
[12] Commans S. and Böck A. (1999). Selenocysteine inserting tRNAs: an overview. FEMS Microbiol. Rev. 23: 333–351
[13] Dimitrov R.A. and Zuker M. (2004). Prediction of hybridization and melting for double-stranded nucleic acids. Biophys. J. 87: 215–226
[14] Ding, Y.: Sfold. http://sfold.wadsworth.org/index.pl
[15] Ding Y. and Lawrence C.E. (2003). A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res. 31: 7280–7301
[16] Dirks R.M. and Pierce N.A. (2003). A partition function algorithm for nucleic acid secondary structure including pseudoknots. J. Comput. Chem. 24(13): 1664–1677 · Zbl 05428255
[17] Doudna J.A. and Cech T.R. (2002). The chemical repertoire of natural ribozymes. Nature 418(6894): 222–228
[18] Dror O., Nussinov R. and Wolfson H.J. (2006). The ARTS web server for aligning RNA tertiary structures. Nucleic Acids Res. 34(Web): W412–W415 · Zbl 05437840
[19] Durbin R., Eddy S., Krogh A. and Mitchison G. (1998). Biological Sequence Analysis: Probabalistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge · Zbl 0929.92010
[20] Ferre, F., Ponty, Y., Lorenz, W.A., Clote, P.: DIAL: a web server for the pairwise alignment of two RNA three-dimensional structures using nucleotide, dihedral angle and base-pairing similarities. Nucleic Acids Res. 35(Web Server issue), W659–668 (2007), July 2007
[21] Freyhult, E., Moulton, V., Clote, P.: Boltzmann probability of RNA structural neighbors and riboswitch detection. Bioinformatics (2007). doi: 10.1093/bioinformatics/btm314
[22] Havgaard J.H., Lyngsø R., Stormo G. and Gorodkin J. (2005). Pairwise local structural alignment of RNA sequences with sequence similarity less than 40%. Bioinformatics 21(9): 1815–1824
[23] Heider J., Baron C. and Böck A. (1992). Coding from a distance dissection of the mrna elements required for the incorporation of selenocysteine into protein. EMBO J. 11: 3759–3766
[24] Hofacker I.L. (2003). Vienna RNA secondary structure server. Nucleic Acids Res. 31: 3429–3431 · Zbl 05435843
[25] Hubbard J.M. and Hearst J.E. (1991). Predicting the three-dimensional folding of transfer RNA with a computer modeling protocol. Biochemistry 30: 5458–5465
[26] Hüttenhofer, A., Böck, A.: RNA structures involved in selenoprotein synthesis. RNA structure and function, pp. 603–639. Cold Spring Harbor Laboratory Press, New York (1998)
[27] Schmitz M. and Tinoco I. (2000). Thermodynamics of formation of secondary structure in nucleic acids. In: Di Cera, E. (eds) Thermodynamics in Biology, pp 131–176. Oxford University Press, New York
[28] Hofacker I.L., Fontana W., Stadler P.F., Bonhoeffer L.S., Tacker M. and Schuster P. (1994). Fast folding and comparison of RNA secondary structures. Monatsch. Chem. 125: 167–188
[29] Lemieux S. and Major F. (2002). RNA canonical and non-canonical base pairing types: A recognition method and complete repertoire. Nucleic Acids Res. 30(19): 4250–4263
[30] Leontis N. and Westhof E. (2003). Tools for the automatic identification and classification of RNA base pairs. Nucleic Acids Res. 31(13): 3450–3460 · Zbl 05437377
[31] Leontis N.B., Stombaugh J. and Westhof E. (2002). Motif prediction in ribosomal RNAs: Lessons and prospects for automated motif prediction in homologous RNA molecules. Biochimie 84: 961–973
[32] Lim L.P., Glasner M.E., Yekta S., Burge C.B. and Bartel D.P. (2003). Vertebrate microRNA genes. Science 299(5612): 1540
[33] Lowe T. and Eddy S. (1997). tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25(5): 955–964
[34] Major F., Turcotte M., Gautheret D., Lapalme G., Fillion E. and Cedergren R. (1991). The combination of symbolic and numerical computation for three-dimensional modeling of RNA. Science 253(5025): 1225–1260
[35] Mandal M., Lee M., Barrick J.E., Weinberg Z., Emilsson G.M., Ruzzo W.L. and Breaker R.R. (2004). A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306(5694): 275–279
[36] Markham N.R. and Zuker M. (2005). DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res. 33: W577–W581 · Zbl 05437579
[37] Mathews D.H. and Turner D.H. (2006). Prediction of RNA secondary structure by free energy minimization. Curr. Opin. Struct. Biol. 16: 270–278
[38] Mathews D.H. and Turner D.H. (2002). Dynalign: An algorithm for finding the secondary structure common to two RNA sequences. J. Mol. Biol. 317: 191–203
[39] Mathews D.H., Turner D.H. and Zuker M. (2000). Secondary structure prediction. In: Beaucage, S., Bergstrom, D.E., Glick, G.D., and Jones, R.A. (eds) Current Protocols in Nucleic Acid Chemistry, pp 11.2.1–11.2.10. Wiley, New York
[40] Matthews D.H., Sabina J., Zuker M. and Turner D.H. (1999). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288: 911–940
[41] McCaskill J.S. (1990). The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers 29: 1105–1119
[42] Moon S., Byun Y., Kim H.-J., Jeong S. and Han K. (2004). Predicting genes expressed via 1 and + 1 frameshifts. Nucleic Acids Res. 32(16): 4884–4892
[43] Ogata H., Akiyuna Y. and Kanehisa M. (1995). A genetic algorithm based molecular modeling technique for RNA stem-loop structures. Nucleic Acids Res. 23(3): 419–426
[44] Nissen P., Hansen J., Ban N., Moore P.B. and Steitz T.A. (2000). The structural basis of ribosome activity in peptide bond synthesis. Science 289(5481): 920–923
[45] Nissen P., Ippolito J.A., Ban N., Moore P.B. and Steitz T.A. (2001). RNA tertiary interactions in the large ribosomal subunit: The A-minor motifautomated identification of RNA. Proc. Natl. Acad. Sci. USA 98(9): 4899
[46] Nussinov R. and Jacobson A.B. (1980). Fast algorithm for predicting the secondary structure of single stranded RNA. Proc. Natl. Acad. Sci. USA 77(11): 6309–6313
[47] Omer A.D., Lowe T.M., Russell A.G., Ebhardt H., Eddy S.R. and Dennis P.P. (2000). Homologues of small nucleolar RNAs in Archaea. Science 288: 517–522
[48] ENCODE Project Consortium.: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146), 799–816 (2007)
[49] Reeder J. and Giegerich R. (2004). Design, implementation and evaluation of a practical pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics 5: 104
[50] Rivas E. and Eddy S.R. (1999). A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol. 285: 2053–2068
[51] Rivas, E., Eddy, S.R.: Noncoding RNA gene detection using comparative sequence analysis. BMC Bioinformatics 2, 8 (2001) [Epub ahead of print]
[52] Robertson N. and Seymour P. (1986). Graph minors II. Algorithmic aspects of tree-width. J Algorithms 7: 309–322 · Zbl 0611.05017
[53] Serganov A., Yuan Y.R., Pikovskaya O., Polonskaia A., Malinina L., Phan A.T., Hobartner C., Micura R., Breaker R.R. and Patel D.J. (2004). Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem. Biol. 11(12): 1729–1741
[54] Soro S. and Tramontano A. (2005). The prediction of protein function at CASP6. Proteins 61: 201–213
[55] Steffen P., Voss B., Rehmsmeier M., Reeder J. and Giegerich R. (2006). Rnashapes: An integrated RNA analysis package based on abstract shapes. Bioinformatics 22(4): 500–503 · Zbl 05325691
[56] Szweczak A.A. and Moore P.B. (1995). The sarcin/ricin loop, a modular RNA. J. Mol. Biol. 247: 81–98
[57] Uliel S., Liang X.H., Unger R. and Michaeli S. (2004). Small nucleolar RNAs that guide modification in trypanosomatids: repertoire, targets, genome organisation, and unique functions. Int. J. Parasitol. 34(4): 445–454
[58] van Batenburg F.H.D., Gultyaev A.P., Pleij C.W.A., Ng J. and Oliehoek J. (2000). PseudoBase: A database with RNA pseudoknots. Nucleic Acids Res. 28(1): 201–204 · Zbl 05434971
[59] Voss, B., Giegerich, R., Rehmsmeier, M.: Complete probabilistic analysis of RNA shapes. BMC Biol. 4(1) (2006) [Epub ahead of print]
[60] Waldispühl J. and Clote P. (2007). Computing the partition function and sampling for saturated secondary structures of RNA, with respect to the Turner energy model. J. Comput. Biol. 14(2): 190–215
[61] Wuchty S., Fontana W., Hofacker I.L. and Schuster P. (1999). Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49: 145–164
[62] SantaLucia J., Burkard M.E., Kierzek R., Schroeder S.J., Jiao X., Cox C., Turner D.H. and Xia T. (1999). Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson–Crick base pairs. Biochemistry 37: 14719–35
[63] Yamaguchi K. and Del Carpio C.A. (1998). A genetic programming based system for the prediction of secondary and tertiary structures of RNA. Genome Inform. 9: 382–383
[64] Yand H., Jossinet F., Leontis N., Chen L., Westbrook J., Berman H. and Westhof E. (2003). Tools for the automatic identification and classification of RNA base pairs. Nucleic Acids Res. 31(13): 3450–3460 · Zbl 05437377
[65] Zuker M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31(13): 3406–3415 · Zbl 05437421
[66] Zuker M. and Stiegler P. (1981). Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9: 133–148 · Zbl 05437422
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.