×

Information transmission in oscillatory neural activity. (English) Zbl 1161.92010

Summary: Periodic neural activity not locked to the stimulus or to motor responses is usually ignored. We present new tools for modeling and quantifying the information transmission based on periodic neural activity that occurs with quasi-random phase relative to the stimulus. We propose a model to reproduce characteristic features of oscillatory spike trains, such as histograms of inter-spike intervals and phase locking of spikes to an oscillatory influence.
The proposed model is based on an inhomogeneous gamma process governed by a density function that is a product of the usual stimulus-dependent rate and a quasi-periodic function. Further, we present an analysis method generalizing the direct method [F. Rieke et al., Spikes: exploring the neural code. Cambridge: MIT Press (1996; Zbl 0912.92004); N. Brenner et al., Neural Comput 12, No. 7, 1531–1552 (2000)] to assess the information content in such data. We demonstrate these tools on recordings from relay cells in the lateral geniculate nucleus of the cat.

MSC:

92C20 Neural biology
60G35 Signal detection and filtering (aspects of stochastic processes)

Keywords:

simulations

Citations:

Zbl 0912.92004
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Adrian ED (1942) Olfactory reactions in the brain of the hedgehog. J Physiol 100(4): 459–473
[2] Aldworth ZN, Miller JP, Gedeon T, Cummins GI, Dimitrov AG (2005) Dejittered spike-conditioned stimulus waveforms yield improved estimates of neuronal feature selectivity and spike-timing precision of sensory interneurons. J Neurosci 25(22): 5323–5332 · doi:10.1523/JNEUROSCI.0359-05.2005
[3] Ahissar E, Vaadia E (1990) Oscillatory activity of single units in a somatosensory cortex of an awake monkey and their possible role in texture analysis. Proc Natl Acad Sci USA 87(22): 8935–8939 · doi:10.1073/pnas.87.22.8935
[4] Barlow HB, Fitzhugh R, Kuffler SW (1957) Change of organization in the receptive fields of the cat’s retina during dark adaptation. J Physiol 137(3): 338–354
[5] Barrett P, Hunter J, Miller JT, Hsu JC, Greenfield P (2005) Matplotlib–a portable python plotting package. Astron Data Anal Softw Syst XIV ASP Conf Ser 347: 91–395
[6] Barbieri R, Quirk MC, Frank LM, Wilson MA, Brown EN (2001) Construction and analysis of non-Poisson stimulus–response models of neural spiking activity. J Neurosci Methods 105(1): 25–37 · doi:10.1016/S0165-0270(00)00344-7
[7] Berman M (1981) Inhomogeneous and modulated gamma processes. Biometrika 68(1): 143–152 · Zbl 0459.62074 · doi:10.1093/biomet/68.1.143
[8] Borst A, Theunissen FE (1999) Information theory and neural coding. Nature Neurosci 2: 947–957 · doi:10.1038/14731
[9] Brenner N, Strong SP, Koberle R, Bialek W, Steveninck RRR (2000) Synergy in a neural code. Neural Comput 12(7): 1531–1552 · doi:10.1162/089976600300015259
[10] Brown EN, Barbieri R, Ventura V, Kass RE, Frank LM (2002) The time-rescaling theorem and its application to neural spike train data analysis. Neural Comput 14(2): 325–346 · Zbl 0989.62060 · doi:10.1162/08997660252741149
[11] Bruno RM, Sakmann B (2006) Cortex is driven by weak but synchronously active thalamocortical synapses. Science 312(5780): 1622–1627 · doi:10.1126/science.1124593
[12] Castelo-Branco M, Neuenschwander S, Singer W (1998) Synchronization of visual responses between the cortex, lateral geniculate nucleus, and retina in the anesthetized cat. J Neurosci 18(16): 6395–6410
[13] Eckhorn R, Popel B (1975) Rigorous and extended application of information theory to the afferent visual system of the cat. II. Experimental results. Biol Cybern 17(1): 71–77 · doi:10.1007/BF00326705
[14] Fellous JM, Houweling AR, Modi RH, Rao RPN, Tiesinga PHE, Sejnowski TJ (2001) Frequency dependence of spike timing reliability in cortical pyramidal cells and interneurons. J Neurophysiol 85(4): 1782–1787
[15] Freeman WJ (1972) Measurement of oscillatory responses to electrical stimulation in olfactory bulb of cat. J Neurophysiol 35(6): 762–779
[16] Fries P, Nikolić D, Singer W (2007) The gamma cycle. Trends Neurosci 30(7): 309–316 · doi:10.1016/j.tins.2007.05.005
[17] Gelperin A, Tank DW (1990) Odour-modulated collective network oscillations of olfactory interneurons in a terrestrial mollusc. Nature 345(6274): 437–440 · doi:10.1038/345437a0
[18] Gray CM, Koenig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338(6213): 334–337 · doi:10.1038/338334a0
[19] Heiss WD, Bornschein H (1966) Multimodal interval histograms of the continuous activity of retinal cat neurons. Kybernetik 3(4): 187–191 · doi:10.1007/BF00290255
[20] Hodgkin AL, Huxley AF (1952) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116(4): 449–472
[21] Hutcheon B, Yarom Y (2000) Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends Neurosci 23(5): 216–222 · doi:10.1016/S0166-2236(00)01547-2
[22] Ishikane H, Gangi M, Honda S, Tachibana M (2005) Synchronized retinal oscillations encode essential information for escape behavior in frogs. Nat Neurosci 8(8): 1087–1095 · doi:10.1038/nn1497
[23] Jarvis MR, Mitra PP (2001) Sampling properties of the spectrum and coherency of sequences of action potentials. Neural Comput 13(4): 717–749 · Zbl 1006.62092 · doi:10.1162/089976601300014312
[24] Kenyon GT, Theiler J, George JS, Travis BJ, Marshak DW (2004) Correlated firing improves stimulus discrimination in a retinal model. Neural Comput 16(11): 2261–2291 · Zbl 1054.92013 · doi:10.1162/0899766041941916
[25] Koepsell K, Wang X, Vaingankar V, Wei Y, Wang Q, Rathbun DL, Usrey WM, Hirsch JA, Sommer FT (2008) Retinal oscillations carry visual information to cortex (submitted)
[26] Koyama S, Shinomoto S (2005) Empirical Bayes interpretations of random point events. J Phys A Math Gen 38(29): L531–L537 · Zbl 1077.82015 · doi:10.1088/0305-4470/38/29/L04
[27] Kuffler SW, Fitzhugh R, Barlow HB (1957) Maintained activity in the cat’s retina in light and darkness. J Gen Physiol 40(5): 683–702 · doi:10.1085/jgp.40.5.683
[28] Laurent G, Davidowitz H (1994) Encoding of olfactory information with oscillating neural assemblies. Science 265(5180): 1872–1875 · doi:10.1126/science.265.5180.1872
[29] Laufer M, Verzeano M (1967) Periodic activity in the visual system of the cat. Vis Res 7(3): 215–229 · doi:10.1016/0042-6989(67)90086-7
[30] Masse NY, Cook EP (2008) The effect of middle temporal spike phase on sensory encoding and correlates with behavior during a motion-detection task. J Neurosci 28(6): 1343 · doi:10.1523/JNEUROSCI.2775-07.2008
[31] Munemori J, Hara K, Kimura M, Sato R (1984) Statistical features of impulse trains in cat’s lateral geniculate neurons. Biol Cybern 50(3): 167–172 · doi:10.1007/BF00340024
[32] Muresan RC, Jurjut OF, Moca VV, Singer W, Nikolic D (2008) The oscillation score: an efficient method for estimating oscillation strength in neuronal activity. J Neurophysiol 99(3): 1333–1353 · doi:10.1152/jn.00772.2007
[33] Montemurro MA, Rasch MJ, Murayama Y, Logothetis NK, Panzeri S (2008) Phase-of-firing coding of natural visual stimuli in primary visual cortex. Curr Biol 8(5): 375–380 · doi:10.1016/j.cub.2008.02.023
[34] Nowak LG (1997) Influence of low and high frequency inputs on spike timing in visual cortical neurons. Cerebral Cortex 7(6): 487–501 · doi:10.1093/cercor/7.6.487
[35] Neuenschwander S, Singer W (1996) Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus. Nature 379(6567): 728–733 · doi:10.1038/379728a0
[36] Ogawa T, Bishop PO, Levick WR (1966) Cortex is driven by weak but synchronously active thalamocortical synapses. J Neurophysiol 29: 1–30
[37] Oliphant TE (2007) Python for scientific computing. Comput Sci Eng 9(3): 10–20 · Zbl 05333418 · doi:10.1109/MCSE.2007.58
[38] OKeefe J, Recce ML (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3(3): 317–330 · doi:10.1002/hipo.450030307
[39] Pérez F, Granger BE (2007) IPython: a system for interactive scientific computing. Comput Sci Eng 9(3): 21–29 · Zbl 05333419 · doi:10.1109/MCSE.2007.53
[40] Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point processes: I. The single spike train. Biophys J 7(4): 391–418 · doi:10.1016/S0006-3495(67)86596-2
[41] Rodieck RW (1967) Maintained activity of cat retinal ganglion cells. J Neurophysiol 5: 1043–1071
[42] Richmond BJ, Optican LM, Spitzer H (1990) Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. I. Stimulus-response relations. J Neurophysiol 64(2): 351–369
[43] Rieke F, Warland D, van Steveninck RR, Bialek W (1999) Spikes: exploring the neural code. MIT Press, Cambridge · Zbl 0912.92004
[44] Szwed M, Bagdasarian K, Ahissar E (2003) Encoding of vibrissal active touch. Neuron 40(3): 621–630 · doi:10.1016/S0896-6273(03)00671-8
[45] Stopfer M, Jayaraman V, Laurent G (2003) Intensity versus identity coding in an olfactory system. Neuron 39(6): 991–1004 · doi:10.1016/j.neuron.2003.08.011
[46] Sahani M, Linden JF (2003) Evidence optimization techniques for estimating stimulus–response functions. In: Obermayer K, Becker S, Thrun S(eds) Advances in neural information processing systems, proceedings of the 2002 conference, vol 15.. MIT Press, Cambridge, pp 109–116
[47] Samonds JM, Zhou Z, Bernard MR, Bonds AB (2006) Synchronous activity in cat visual cortex encodes collinear and cocircular contours. J Neurophysiol 95(4): 2602–2616 · doi:10.1152/jn.01070.2005
[48] Tiesinga P, Fellous JM, Sejnowski TJ (2008) Regulation of spike timing in visual cortical circuits. Nat Rev Neurosci 9(2): 97–107 · doi:10.1038/nrn2315
[49] Tuckwell HC (1988) Introduction to theoretical neurobiology. Cambridge University Press, Cambridge · Zbl 0647.92009
[50] Usrey WM, Alonso JM, Reid RC (2000) Synaptic interactions between thalamic inputs to simple cells in cat visual cortex. J Neurosci 20(14): 5461
[51] Wang X, Wei Y, Vaingankar V, Wang Q, Koepsell K, Sommer FT, Hirsch JA (2007) Feedforward excitation and inhibition evoke dual modes of firing in the cat’s visual thalamus during naturalistic viewing. Neuron 55(3): 465–478 · doi:10.1016/j.neuron.2007.06.039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.