×

Estimation and inference in functional mixed-effects models. (English) Zbl 1162.62341

Summary: Functional mixed-effects models are very useful in analyzing functional data. A general functional mixed-effects model that inherits the flexibility of linear mixed-effects models in handling complex designs and correlation structures is considered. A wavelet decomposition approach is used to model both fixed-effects and random-effects in the same functional space, meaning that the population-average curve and the subject-specific curves have the same smoothness property. A linear mixed-effects representation is then obtained that is used for estimation and inference in the general functional mixed-effects model. Adapting recent methodologies in linear mixed-effects and nonparametric regression models, hypothesis testing procedures for both fixed-effects and random-effects are provided. Using classical linear mixed-effects estimation techniques, the linear mixed-effects representation is also used to obtain wavelet-based estimates for both fixed-effects and random-effects in the general functional mixed-effects model. The usefulness of the proposed estimation and hypothesis testing procedures is illustrated by means of a small simulation study and a real-life dataset arising from physiology.

MSC:

62G10 Nonparametric hypothesis testing
62G08 Nonparametric regression and quantile regression
62J05 Linear regression; mixed models
65T60 Numerical methods for wavelets

Software:

fda (R); gss
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abramovich, F.; Angelini, C., Testing in mixed-effects FANOVA models, J. Statist. Plann. Inference, 136, 4326-4348 (2006) · Zbl 1098.62050
[2] Abramovich, F.; Sapatinas, T.; Silverman, B. W., Wavelet thresholding via a Bayesian approach, J. Roy. Statist. Soc. Ser. B, 60, 725-749 (1998) · Zbl 0910.62031
[3] Abramovich, F.; Antoniadis, A.; Sapatinas, T.; Vidakovic, B., Optimal testing in a fixed-effects functional analysis of variance model, Internat. J. Wavelets, Multiresolution and Inform. Process., 2, 323-349 (2004) · Zbl 1071.62037
[4] Antoniadis, A., Smoothing noisy data with coiflets, Statist. Sin., 4, 651-678 (1994) · Zbl 0824.62030
[5] Baraud, Y., Non-asymptotic minimax rates of testing in signal detection, Bernoulli, 8, 577-606 (2002) · Zbl 1007.62042
[6] Baraud, Y.; Huet, S.; Laurent, B., Adaptive tests of linear hypotheses by model selection, Ann. Statist., 31, 225-251 (2003) · Zbl 1018.62037
[7] Cahouët, V.; Martin, L.; Amarantini, D., Static optimal estimation of joint accelerations for inverse dynamic problem solution, J. Biomechanics, 35, 1507-1513 (2002)
[8] Claeskens, G., Restricted likelihood ratio lack-of-fit tests using mixed spline models, J. Roy. Statist. Soc. Ser. B, 66, 909-926 (2004) · Zbl 1059.62041
[9] Crainiceanu, C. M.; Ruppert, D., Likelihood ratio tests in linear mixed models with one variance component, J. Roy. Statist. Soc. Ser. B, 66, 165-185 (2004) · Zbl 1061.62027
[10] Dahmen, W.; DeVore, R.; Scherer, K., Multidimensional spline approximation, SIAM J. Numer. Anal., 17, 380-402 (1980) · Zbl 0437.41010
[11] Delyon, B.; Juditsky, A., On minimax wavelet estimators, Appl. Comput. Harmonic Anal., 3, 215-228 (1996) · Zbl 0865.62023
[12] Donoho, D. L.; Johnstone, I. M., Minimax estimation via wavelet shrinkage, Ann. Statist., 26, 879-921 (1998) · Zbl 0935.62041
[13] Durban, M.; Harezlak, J.; Wand, M. P.; Carroll, R. J., Simple fitting of subject-specific curves for longitudinal data, Statist. Med., 24, 1153-1167 (2005)
[14] Green, P. J., Discussion of “The analysis of designed experiments and longitudinal data by using smoothing splines” by Verbyla et al, Appl. Statist., 48, 304-305 (1999)
[15] Guo, W., Inference in smoothing spline analysis of variance, J. Roy. Statist. Soc. Ser. B, 64, 887-898 (2002) · Zbl 1067.62070
[16] Guo, W., Functional mixed effects models, Biometrics, 58, 121-128 (2002) · Zbl 1209.62072
[17] Horowitz, J. L.; Spokoiny, V. G., An adaptive, rate-optimal test of a parametric mean-regression model against a nonparametric alternative, Econometrica, 69, 599-631 (2001) · Zbl 1017.62012
[18] Ingster; Yu, I., Minimax nonparametric detection of signals in white Gaussian noise, Problems of Information Transmission, 18, 130-140 (1982) · Zbl 0499.94002
[19] Laird, N. M.; Ware, J. H., Random-effects models for longitudinal data, Biometrics, 38, 963-974 (1982) · Zbl 0512.62107
[20] Mallat, S. G., A Wavelet Tour of Signal Processing (1999) · Zbl 0998.94510
[21] Morris, J. S.; Carroll, R. J., Wavelet-based functional mixed models, J. Roy. Statist. Soc. Ser. B, 68, 179-199 (2006) · Zbl 1110.62053
[22] Ngo, L.; Wand, M. P., Smoothing with mixed model software, J. Statist. Software, 9, 1, 1-54 (2004)
[23] Patterson, H. D.; Thompson, R., Recovery of inter-block information when block sizes are unequal, Biometrika, 58, 545-554 (1971) · Zbl 0228.62046
[24] Ramsay, J. O.; Silverman, B. W., Functional Data Analysis (1997), Springer: Springer New York · Zbl 0882.62002
[25] Rice, J. A., Functional and longitudinal data analysis: perspectives on smoothing, Statist. Sin., 14, 631-647 (2004) · Zbl 1073.62033
[26] Rice, J. A.; Silverman, B. W., Estimating the mean and covariance structure nonparametrically when the data are curves, J. Roy. Statist. Soc. Ser. B, 53, 233-243 (1991) · Zbl 0800.62214
[27] Rice, J. A.; Wu, C. O., Nonparametric mixed effects models for unequally sampled noisy curves, Biometrics, 57, 253-259 (2001) · Zbl 1209.62061
[28] Self, S. G.; Liang, K. Y., Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions, J. Amer. Statist. Assoc., 82, 605-610 (1987) · Zbl 0639.62020
[29] Speed, T. P., Discussion of “That BLUP is a good thing: the estimation of random effects”, by G.K. Robinson, Statist. Sci., 6, 42-44 (1991)
[30] Spokoiny, V. G., Adaptive hypothesis testing using wavelets, Ann. Statist., 24, 2477-2498 (1996) · Zbl 0898.62056
[31] Wang, Y., Mixed-effects smoothing spline ANOVA, J. Roy. Statist. Soc. Ser. B, 60, 159-174 (1998) · Zbl 0909.62034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.