×

Efficient deterministic numerical simulation of stochastic asset-liability management models in life insurance. (English) Zbl 1162.91412

Summary: New regulations, stronger competitions and more volatile capital markets have increased the demand for stochastic asset-liability management (ALM) models for insurance companies in recent years. The numerical simulation of such models is usually performed by Monte Carlo methods which suffer from a slow and erratic convergence, though. As alternatives to Monte Carlo simulation, we propose and investigate in this article the use of deterministic integration schemes, such as quasi-Monte Carlo and sparse grid quadrature methods. Numerical experiments with different ALM models for portfolios of participating life insurance products demonstrate that these deterministic methods often converge faster, are less erratic and produce more accurate results than Monte Carlo simulation even for small sample sizes and complex models if the methods are combined with adaptivity and dimension reduction techniques. In addition, we show by an analysis of variance (ANOVA) that ALM problems are often of very low effective dimension which provides a theoretical explanation for the success of the deterministic quadrature methods.

MSC:

91B30 Risk theory, insurance (MSC2010)
65C05 Monte Carlo methods

Software:

nwSpGr
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Acworth, P.; Broadie, M.; Glasserman, P., A comparison of some Monte Carlo and quasi-Monte Carlo methods for option pricing, (Hellekallek, P.; Niederreiter, H., Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (1998), Springer), 1-18 · Zbl 0888.90010
[2] Albrecher, H.; Hartinger, J.; Tichy, R., Quasi-Monte Carlo techniques for CAT bond pricing, Monte Carlo Methods and Applications, 10, 3-4, 197-212 (2004) · Zbl 1060.65501
[3] Bacinello, A., Fair pricing of life insurance participating contracts with a minimum interest rate guaranteed, Astin Bulletin, 31, 2, 275-297 (2001) · Zbl 1098.91537
[4] Bacinello, A., Pricing guaranteed life insurance participating policies with annual premiums and surrender option, Astin Bulletin, 7, 3, 1-17 (2003) · Zbl 1084.62519
[5] Ballotta, L.; Haberman, S.; Wang, N., Guarantees in with-profit and unitized with-profit life insurance contracts: Fair valuation problem in presence of the default option, Insurance: Mathematics & Ecomonics, 73, 1, 97-121 (2006)
[6] Bauer, D.; Kling, A.; Russ, J., Ein allgemeines Modell zur Analyse und Bewertung von Guaranteed Minimum Benefits in Rondspolicen, Blätter der DGVFM, 28, 2, 259-290 (2007) · Zbl 1215.91034
[7] Briys, E.; Varenne, F., On the risk of life insurance liabilities: Debunking some common pitfalls, Journal of Risk and Insurance, 64, 37-57 (1997)
[8] Bungartz, H.-J.; Dirnstorfer, S., Multivariate quadrature on adaptive sparse grids, Computing, 71, 1, 89-114 (2003) · Zbl 1031.65037
[9] Bungartz, H.-J.; Griebel, M., Sparse grids, Acta Numerica, 13, 1-123 (2004)
[10] Caflisch, R.; Morokoff, W.; Owen, A., Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension, Journal of Computational Finance, 1, 1, 27-46 (1997)
[11] Corsaro, S.; De Angelis, P.; Marino, Z.; Perla, F., On high-performance software development for the numerical simulation of life insurance policies, (Appleby, J.; Edelman, D.; Miller, J., Numerical Methods for Finance (2006), Chapman & Hall/CRC), 87-111 · Zbl 1147.91339
[12] De Felice, M.; Moriconi, F., Market based tools for managing the life insurance company, Astin Bulletin, 1, 35, 79-111 (2005) · Zbl 1137.62384
[13] Gerstner, T.; Griebel, M., Numerical integration using sparse grids, Numerical Algorithms, 18, 209-232 (1998) · Zbl 0921.65022
[14] Gerstner, T.; Griebel, M., Dimension-adaptive tensor-product quadrature, Computing, 71, 1, 65-87 (2003) · Zbl 1030.65015
[15] Gerstner, T.; Griebel, M.; Holtz, M.; Goschnick, R.; Haep, M., A general asset-liability management model for the efficient simulation of portfolios of life insurance policies, Insurance: Mathematics & Ecomonics, 42, 2, 704-716 (2008) · Zbl 1152.91581
[16] Gerstner, T.; Holtz, M., Valuation of performance-dependent options, Applied Mathematical Finance, 15, 1, 1-20 (2008) · Zbl 1134.91418
[17] Giles, M. B., Multilevel Monte Carlo path simulation, Operations Research, 56, 3, 607-617 (2008) · Zbl 1167.65316
[18] Glasserman, P., Monte Carlo Methods in Financial Engineering (2003), Springer
[19] Griebel, M., Sparse grids and related approximation schemes for higher dimensional problems, (Pardo, L.; Pinkus, A.; Suli, E.; Todd, M. J., Foundations of Computational Mathematics (FoCM05), Santander (2006), Cambridge University Press), 106-161 · Zbl 1106.65332
[20] Grosen, A.; Jorgensen, P., Fair valuation of life insurance liabilities: The impact of interest rate guarantees, surrender options and bonus policies, Insurance: Mathematics & Ecomonics, 26, 1, 37-57 (2000) · Zbl 0977.62108
[21] Heiss, F.; Winschel, V., Likelihood approximation by numerical integration on sparse grids, Journal of Econometrics, 144, 1, 62-80 (2008) · Zbl 1418.62466
[22] Imai, J.; Tan, K., Minimizing effective dimension using linear transformation, (Niederreiter, H., Monte Carlo and Quasi-Monte Carlo Methods 2002 (2004), Springer), 275-292 · Zbl 1043.65003
[23] Jensen, B.; Jorgensen, P. L.; Grosen, A., A finite difference approach to the valuation of path dependent life insurance liabilities, Geneva Papers on Risk and Insurance Theory, 26, 1, 57-84 (2001)
[24] Jorgensen, P., On accounting standards and fair valuation of life insurance and pension liabilities, Scandinavian Actuarial Journal, 5, 372-394 (2004) · Zbl 1087.62117
[25] Kloeden, P.; Platen, E., Numerical Solution of Stochastic Differential Equations (1992), Springer · Zbl 0752.60043
[26] Kuo, F. Y.; Sloan, I., Lifting the curse of dimensionality, Notices of the American Mathematical Society, 52, 11, 1320-1328 (2005) · Zbl 1080.65020
[27] Miltersen, K.; Persson, S., Guaranteed investment contracts: Distributed and undistributed excess returns, Scandinavian Actuarial Journal, 23, 257-279 (2003) · Zbl 1092.91053
[28] Moller, T.; Steffensen, M., (Market-Valuation Methods in Life and Pension Insurance. Market-Valuation Methods in Life and Pension Insurance, International Series on Actuarial Science (2007), Cambridge University Press) · Zbl 1114.91062
[29] Moro, B., The full Monte, RISK, 8, 2 (1995)
[30] Moskowitz, B.; Calfisch, R., Smoothness and dimension reduction in quasi-Monte Carlo methods, Journal of Mathematics and Computational Modeling, 23, 37-54 (1996) · Zbl 0858.65023
[31] Niederreiter, H., Random Number Generation and Quasi-Monte Carlo Methods (1992), SIAM: SIAM Philadelphia · Zbl 0761.65002
[32] Ninomiya, S.; Tezuka, S., Toward real-time pricing of complex financial derivatives, Applied Mathematical Finance, 3, 1-20 (1996) · Zbl 1097.91530
[33] Novak, E.; Woźniakowski, H., Intractability results for integration and discrepancy, Journal of Complexity, 17, 388-441 (2001) · Zbl 0984.68083
[34] Novak, E.; Woźniakowski, H., When are integration and discrepancy tractable?, (DeVore, R. A.; Iserles, A.; Süli, E., Foundations of Computational Mathematics (FoCM99) (2001), Cambridge University Press: Cambridge University Press Oxford), 211-266 · Zbl 0978.65014
[35] Papageorgiou, A.; Paskov, S., Deterministic simulation for risk management, Journal of Portfolio Management, 25, 5, 122-127 (1995)
[36] Paskov, S.; Traub, J., Faster valuation of financial derivatives, Journal of Portfolio Management, 22, 113-120 (1995)
[37] Sloan, I.; Woźniakowski, H., When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals?, Journal of Complexity, 14, 1-33 (1998) · Zbl 1032.65011
[38] Smolyak, S. A., Quadrature and interpolation formulas for tensor products of certain classes of functions, Doklady Akademii Nauk SSSR, 4, 240-243 (1963) · Zbl 0202.39901
[39] Sobol, I., The distribution of points in a cube and the approximate evaluation of integrals, Journal of Computational Mathematics and Mathematical Physics, 7, 86-112 (1967) · Zbl 0185.41103
[40] Tanskanen, A.; Lukkarinen, J., Fair valuation of path-dependent participating life insurance contracts, Insurance: Mathematics & Ecomonics, 33, 3, 595-609 (2003) · Zbl 1103.91373
[41] Wang, X.; Fang, K.-T., The effective dimension and quasi-Monte Carlo integration, Journal of Complexity, 19, 2, 101-124 (2003) · Zbl 1021.65002
[42] Wang, X.; Sloan, I., Why are high-dimensional finance problems often of low effective dimension?, SIAM Journal of Scientific Computing, 27, 1, 159-183 (2005) · Zbl 1149.65303
[43] Wasilkowski, G. W.; Woźniakowski, H., Explicit cost bounds of algorithms for multivariate tensor product problems, Journal of Complexity, 11, 1-56 (1995) · Zbl 0819.65082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.