×

Efficient reconstruction of metabolic pathways by bidirectional chemical search. (English) Zbl 1163.92012

Summary: One of the main challenges in systems biology is the establishment of metabolome: a catalogue of the metabolites and biochemical reactions present in a specific organism. Current knowledge of biochemical pathways as stored in public databases such as KEGG, is based on carefully curated genomic evidence for the presence of specific metabolites and enzymes that activate particular biochemical reactions. We present an efficient method to build a substantial portion of the artificial chemistry defined by the metabolites and biochemical reactions in a given metabolic pathway, which is based on bidirectional chemical search. Computational results on the pathways stored in KEGG reveal novel biochemical pathways.

MSC:

92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
92C40 Biochemistry, molecular biology
92-08 Computational methods for problems pertaining to biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bartley, G.E., Scolnik, P.A., Beyer, P., 1999. Two Arabidopsis thaliana carotene desaturases, phytoene desaturase and {\(\zeta\)}-carotene desaturase, expressed in Escherichia coli, catalyze a poly-cis pathway to yield pro-lycopene. Eur. J. Biochem. 259(1–2), 396–03.
[2] Benkö, G., Flamm, C., Stadler, P.F., 2003a. Generic properties of chemical networks: artificial chemistry based on graph rewriting. In: Proc. 7th European Conf. Advances in Artificial Life, Lect. Notes Comput. Sci., vol. 2801, pp. 10–9. Springer, Berlin.
[3] Benkö, G., Flamm, C., Stadler, P.F., 2003b. A graph-based toy model of chemistry. J. Chem. Inf. Comput. Sci. 43(4), 1085–093.
[4] Benkö, G., Flamm, C., Stadler, P.F., 2004. Multi-phase artificial chemistry. In: Schaub, H., Detje, F., Brüggemann, U. (Eds.), The Logic of Artificial Life: Abstracting and Synthesizing the Principles of Living Systems, pp. 16–2. IOS Press, Amsterdam.
[5] Brooksbank, C., Cameron, G., Thornton, J., 2005. The European Bioinformatics Institute’s data resources: towards systems biology. Nucleic Acids Res. 33(D), D46–D53. · Zbl 05437511
[6] Caspi, R., Foerster, H., Fulcher, C.A., Hopkinson, R., Ingraham, J., Kaipa, P., Krummenacker, M., Paley, S., Pick, J., Rhee, S.Y., Tissier, C., Zhang, P., Karp, P.D., 2006. MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res. 34(D), D511–D516. · Zbl 05437779
[7] Deville, Y., Gilbert, D., van Helden, J., Wodak, S.J., 2003. An overview of data models for the analysis of biochemical pathways. Brief. Bioinform. 4(3), 246–59. · Zbl 1112.92318
[8] Dijkstra, E.W., 1959. A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–71. · Zbl 0092.16002
[9] Dittrich, P., Ziegler, J., Banzhaff, W., 2001. Artificial chemistries–a review. Artif. Life 7(1), 225–75.
[10] Edwards, J.S., Palsson, B.O., 2000. The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. P. Natl. Acad. Sci. USA 97(10), 5528–533.
[11] Estévez, J.M., Cantero, A., Reindl, A., Reichler, S., León, P., 2001. 1-deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J. Biol. Chem. 276(25), 22901–2909.
[12] Félix, L., Rosselló, F., Valiente, G., 2007. Reconstructing metabolic pathways by bidirectional chemical search. In: Proc. 5th Int. Conf. Computational Methods in Systems Biology, Lect. Notes Bioinformatics, vol. 4695, pp. 217–32. Springer, Berlin.
[13] Félix, L., Valiente, G., 2007. Validation of metabolic pathway databases based on chemical substructure search. Biomol. Eng. 24(3), 327–35.
[14] Floyd, R.W., 1962. Algorithm 97: Shortest path. Commun. ACM 5(6), 345.
[15] Johnson, D.B., 1977. Efficient algorithms for shortest paths in sparse networks. J. ACM 24(1), 1–3. · Zbl 0343.68028
[16] Kanehisa, M., Goto, S., 2000. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–0. · Zbl 05435931
[17] Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K.F., Itoh, M., Kawashima, S., Katayama, T., Araki, M., Hirakawa, M., 2006. From genomics to chemical genomics: New developments in KEGG. Nucleic Acids Res. 34(D), D354–D357. · Zbl 05437839
[18] Karp, P.D., Mavrovouniotis, M.L., 1994. Representing, analyzing, and synthesizing biochemical pathways. IEEE Expert 9(2), 11–1. · Zbl 05094706
[19] Lemer, C., Antezana, E., Couche, F., Fays, F., Santolaria, X., Janky, R., Deville, Y., Richelle, J., Wodak, S.J., 2004. The aMAZE LightBench: a web interface to a relational database of cellular processes. Nucleic Acids Res. 32(D), 443–48. · Zbl 05436150
[20] Ma, H., Zeng, A.-P., 2003. Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics 19(2), 270–77.
[21] McCaskill, J., Niemann, U., 2001. Graph replacement chemistry for DNA processing. In: DNA 2000, Lect. Notes Comput. Sci., vol. 2054, pp. 103–16. Springer, Berlin. · Zbl 0984.68089
[22] Michal, G. (Ed.), 1999. Biological Pathways: An Atlas of Biochemistry and Molecular Biology. Wiley, New York.
[23] Overbeek, R., Larsen, N., Pusch, G.D., D’Souza, M., Selkov, E., Kyrpides, N., Fonstein, M., Maltsev, N., Selkov, E., 2000. WIT: Integrated system for high-throughput genome sequence analysis and metabolic reconstruction. Nucleic Acids Res. 28(1), 123–25. · Zbl 05436537
[24] Rosselló, F., Valiente, G., 2004. Analysis of metabolic pathways by graph transformation. In: Proc. 2nd Int. Conf. Graph Transformation, Lect. Notes Comput. Sci., vol. 3256, pp. 70–2. Springer, Berlin. · Zbl 1116.92312
[25] Rosselló, F., Valiente, G., 2005a. Chemical graphs, chemical reaction graphs, and chemical graph transformation. Electron. Notes Theor. Comput. Sci. 127(1), 157–66.
[26] Rosselló, F., Valiente, G., 2005b. Graph transformation in molecular biology. In: Formal Methods in Software and System Modeling, Lect. Notes Comput. Sci., vol. 3393, pp. 116–33. Springer, Berlin. · Zbl 1075.68610
[27] Schomburg, I., Chang, A., Schomburg, D., 2002. BRENDA, enzyme data and metabolic information. Nucleic Acids Res. 30(1), 47–9. · Zbl 05436885
[28] Scolnik, P.A., Bartley, G.E., 1995. Nucleotide sequence of zeta-carotene desaturase (accession no. U38550) from arabidopsis. Plant Physiol. 109(4), 1499.
[29] Seo, M., Koshiba, T., 2002. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 7(1), 41–8.
[30] Takaoka, T., 1998. Subcubic cost algorithms for the all pairs shortest path problem. Algorithmica 20(3), 309–18. · Zbl 0898.68030
[31] Temkin, O.N., Zeigarnik, A.V., Bonchev, D., 1996. Chemical Reaction Networks: A Graph-Theoretical Approach. CRC Press, Boca Raton.
[32] Tubert-Brohman, I., 2004. Perl and chemistry. Perl J. 8(6), 3–5. PerlMol is available at http://www.perlmol.org/ .
[33] Wagner, A.B., 2006. Scifinder scholar 2006: An empirical analysis of research topic query processing. J. Chem. Inf. Model. 46(2), 767–74.
[34] Weininger, D., 1988. SMILES, a chemical language and information system, 1: introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28(1), 31–6. http://www.daylight.com/dayhtml/doc/theory/ .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.