×

Practical shape optimization of a levitation device for single droplets. (English) Zbl 1175.76050

Summary: The rigorous optimization of the geometry of a glass cell with computational fluid dynamics (CFD) is performed. The cell will be used for non-invasive nuclear magnetic resonance (NMR) measurements on a single droplet levitated in a counter current of liquid in a conical tube. The objective function of the optimization describes the stability of the droplet position required for long-period NMR measurements.
The direct problem and even more the optimization problem require an efficient method to handle the high numerical complexity implied. Here, the flow equations are solved two-dimensionally and in steady state with the finite-element code SEPRAN for a spherical droplet with ideally mobile interface. The optimization is performed by embedding the CFD solver SEPRAN in the optimization environment EFCOSS. The underlying derivatives are computed using the automatic differentiation software ADIFOR. An overall concept for the optimization process is developed, requiring a robust scheme for the discretization of the geometries as well as a model for horizontal stability in the axially symmetric case. The numerical results show that the previously employed measuring cell described by Schröter is less suitable to maintain a stable droplet position than the new cell.

MSC:

76D55 Flow control and optimization for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids

Software:

SEPRAN; EFCOSS; ADIFOR; CFL3D
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson WK, Newman JC, Whitfield DL, Nielsen EJ (2001) Sensitivity analysis for the Navier–Stokes equations on unstructured meshes using complex variables. AIAA J 39(1):56–63 · doi:10.2514/2.1270
[2] Berz M, Bischof CH, Corliss G, Griewank A (1996) Computational differentiation: techniques, applications and tools. SIAM, Philadelphia · Zbl 0857.00033
[3] Bischof CH, Carle A, Khademi P, Mauer A (1996) ADIFOR 2.0: automatic differentiation of FORTRAN 77 programs. IEEE Comput Sci Eng 3(3):18–32 · Zbl 05092146 · doi:10.1109/99.537089
[4] Bischof CH, Bücker HM, Lang B, Rasch A (2003a) An interactive environment for supporting the transition from simulation to optimization. Sci Program 11(4):263–272
[5] Bischof CH, Bücker HM, Lang B, Rasch A (2003b) Solving large-scale optimization problems with EFCOSS. Adv Eng Softw 34(10):633–639 · Zbl 02003801 · doi:10.1016/S0965-9978(03)00094-2
[6] Bischof CH, Bücker HM, Rasch A, Slusanschi E (2003c) Evaluation of a computer model for wavy falling films using EFCOSS. In: Kumar V, Gavrilova ML, Tan CJK, L’Ecuyer P (eds) Computational science and its applications–ICCSA 2003, proceedings of the international conference on computational science and its applications, part II, Montreal, Canada, 18–21 May 2003. Lecture notes in computer science, vol 2668. Springer, Berlin, pp 78–84
[7] Bischof CH, Bücker HM, Rasch A, Slusanschi E (2003d) Sensitivities for a single drop simulation. In: Sloot PMA, Abramson D, Bogdanov AV, Dongarra JJ, Zomaya AY, Gorbachev YE (eds) Computational science–ICCS 2003, proceedings of the international conference on computational science, part II, Melbourne, Australia and St. Petersburg, Russia, 2–4 June 2003. Lecture notes in computer science, vol 2658. Springer, Berlin, pp 888–896
[8] Bischof CH, Bücker HM, Lang B, Rasch A, Risch JW (2003e) Extending the functionality of the general-purpose finite element package SEPRAN by automatic differentiation. Int J Numer Methods Eng 58(14):2225–2238 · Zbl 1032.76589 · doi:10.1002/nme.942
[9] Bischof CH, Bücker HM, Lang B, Rasch A, Slusanschi E (2005) Efficient and accurate derivatives for a software process chain in airfoil shape optimization. Future Gener Comput Syst 21(8):1333–1344 · doi:10.1016/j.future.2004.11.002
[10] Bosch EGT, Lasance CJM (2000) High accuracy thermal interface resistance measurement using a transient method. Electron Cool Mag 6(3):26–32
[11] Brauer H (1979) Turbulenz in mehrphasigen Strömungen. Chem Ing Tech 51(10):934–948 · doi:10.1002/cite.330511006
[12] Bücker HM, Corliss GF, Hovland PD, Naumann U, Norris B (2005) Automatic differentiation: applications, theory, and implementations. Springer, New York
[13] Carle A, Fagan M, Green LL (1998) Preliminary results from the application of automated adjoint code generation to CFL3D. In: Proceedings of the 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization, St. Louis, MO, USA, 2–4 September 1998, AIAA Paper 98-4807
[14] Clift R, Grace JR, Weber ME (1978) Bubbles, drops, and particles. Academic Press, New York
[15] Corliss G, Faure C, Griewank A, Hascöet L, Naumann U (eds) (2002) Automatic differentiation of algorithms: from simulation to optimization. Springer, New York
[16] Gay DM (1990) Usage summary for selected optimization routines. Computing Science Technical Report 153, AT&T Bell Laboratories, Murray Hill
[17] Griewank A (1989) On automatic differentiation. In: Iri IM, Tanabe K (eds) Mathematical programming: recent developments and applications. Kluwer Academic, Dordrecht, pp 83–108
[18] Griewank A (2000) Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM, Philadelphia · Zbl 0958.65028
[19] Griewank A, Corliss G (1991) Automatic differentiation of algorithms. SIAM, Philadelphia · Zbl 0747.00030
[20] Han SI (2001) Correlation of position and motion by NMR: pipe flow, falling drop, and salt water ice. Dissertation, RWTH Aachen University
[21] Han SI, Stapf S, Blümich B (2001) NMR imaging of falling water drops. Phys Rev Lett 87(14):144501 · doi:10.1103/PhysRevLett.87.144501
[22] Hascoët L, Vazquez M, Dervieux A (2003) Automatic differentiation for optimum design, Applied to sonic boom reduction. In: Kumar V, Gavrilova ML, Tan CJK, L’Ecuyer P (eds) Computational science and its applications–ICCSA 2003, proceedings of the international conference on computational science and its applications, part II, Montreal, Canada, 18–21 May 2003. Lecture notes in computer science, vol 2668. Springer, Berlin, pp 85–94
[23] Henschke M (2004) Auslegung pulsierter Siebboden-Extraktionskolonnen. Shaker Aachen, Habilitationsschrift, RWTH Aachen, ISBN 3-8322-3511-6.
[24] Henschke M, Pfennig A (1996) Simulation of packed extraction columns with the REDROP model. In: Proceedings of the 12th international congress of chemical and process engineering, CHISA, Praha
[25] Henschke M, Waheed A, Pfennig A (2000) Wandeinfluss auf die Sedimentationsgeschwindigkeit von Kugeln. Chem Ing Tech 72(11):1376–1380 · doi:10.1002/1522-2640(200011)72:11<1376::AID-CITE1376>3.0.CO;2-C
[26] Idelchik IE (1994) Handbook of hydraulic resistance. CRC Press, Boca Raton, pp 239–331
[27] Kumar A, Hartland S (1994) Prediction of drop size, dispersed-phase holdup, slip velocity, and limiting throughputs in packed extraction columns. Trans IChemE, Part A 72:89–104
[28] Lyness JN, Moler CB (1967) Numerical differentiation of analytical functions. SIAM J Numer Anal 4:202–210 · Zbl 0155.48003 · doi:10.1137/0704019
[29] Martins JRRA, Sturdza P, Alonso JJ (2003) The complex-step derivative approximation. ACM Trans Math Softw 29:245–262 · Zbl 1072.65027 · doi:10.1145/838250.838251
[30] Schröter J, Bäcker W, Hampe MJ (1998) Stoffaustauschmessungen an Einzeltropfen und an Tropfenschwärmen in einer Gegenstrommeßzelle. Chem Ing Tech 70(3):279–283 · doi:10.1002/cite.330700311
[31] Rall LB (1981) Automatic differentiation: techniques and applications. Lecture notes in computer science, vol 120. Springer, Berlin
[32] Segal G (1993) SEPRAN users manual. Ingenieursbureau Sepra, Leidschendam
[33] Segal G, Vuik C, Vermolen FA (1998) Conserving discretization for the free boundary in a two-dimensional Stefan problem. J Comput Phys 141(1):1–21 · Zbl 0931.65100 · doi:10.1006/jcph.1998.5900
[34] Slattery JC (1990) Interfacial transport phenomena. Springer, Berlin
[35] Tabata M, Itakura K (1998) A precise computation of drag coefficients of a sphere. Int J Comput Fluid Dyn 9(3–4):303–311 · Zbl 0917.76040 · doi:10.1080/10618569808940861
[36] Tomiyama A, Tamai H, Zun I, Hosokawa S (2002) Transverse migration of single bubbles in simple shear flows. Chem Eng Sci 57:1849–1858 · doi:10.1016/S0009-2509(02)00085-4
[37] van Kan JJIM, Segal A (1995) Numerik partieller Differentialgleichungen für Ingenieure. Teubner, Stuttgart, p 117
[38] van Keken PE, Yuen DA, Petzold LR (1995) DASPK: a new high order and adaptive time-integration technique with applications to mantle convection with strongly temperature- and pressure-dependent rheology. Geophys Astrophys Fluid Dyn 80:57–74 · doi:10.1080/03091929508229763
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.