×

Advection approaches for single- and multi-material arbitrary Lagrangian-Eulerian finite element procedures. (English) Zbl 1168.74451

Summary: The essential feature in arbitrary Lagrangian-Eulerian (ALE) based finite element approaches is the additional requirement to consider flow effects of the materials and the solution variables through the computational domain. These flow effects are commonly known as advective effects. The present paper examines different advection strategies for the application of the ALE finite element method in a finite deformation solid mechanics framework, where especially micromechanical problems are referred to. The global solution algorithm is based on the well-known fractional step method that provides an operator splitting approach for the solution of the coupled ALE equations. Distinguishing the so-called single-material and the multi-material ALE method, different advection schemes based on volume- and material-associated advection procedures are required. For the latter case, the material interfaces are not resolved explicitly by the finite element mesh. Instead a volume-of-fluid interface tracking approach in terms of the volume fractions of the different material phases is applied.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74S15 Boundary element methods applied to problems in solid mechanics

Software:

SLIC; SALE-3D
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Aboudi J (1991) Mechanics of composite materials – a unified micromechanical approach. Elsevier, Amsterdam · Zbl 0837.73003
[2] Amsden AA, Ruppel HM, Hirt CW (1980) SALE: a simplified ALEcomputer program for fluid flow at all speeds. Los Alamos NationalLaboratory, Los Alamos LA-8095
[3] Armero F, Love E (2003) An arbitrary Lagrangian-Eulerian finite element method for finite strain plasticity. Int J Numer Meth Eng 57:471–508 · Zbl 1062.74604 · doi:10.1002/nme.684
[4] Aulisa E, Manservisi S, Scardovelli R (2004) A surface marker algorithm coupled to an area-preserving marker distribution method for three-dimensional interface tracking. J Comput Phys 197:555–584 · Zbl 1079.76605 · doi:10.1016/j.jcp.2003.12.009
[5] Aymone JLF (2004) Mesh motion techniques for the ALE formulation in 3D large deformation problems. Int J Numer Meth Eng 59:1879–1908 · Zbl 1060.74625 · doi:10.1002/nme.939
[6] Bayoumi HN, Gadala MS (2004) A complete finite element treatment for the fully coupled implict ALE formulation. Comput Mech 33:435–452 · Zbl 1115.74368 · doi:10.1007/s00466-003-0544-y
[7] Belytschko T, Ong JS-J, Liu WK, Kennedy JM (1984) Hourglass control in linear and nonlinear problems. Comput Meth Appl Mech Eng 43:251–276 · Zbl 0532.73074 · doi:10.1016/0045-7825(84)90067-7
[8] Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York · Zbl 0959.74001
[9] Benson DJ (1989) An efficient, accurate, simple ALE method for nonlinear finite element programs. Comput Meth Appl Mech Eng 72:305–350 · Zbl 0675.73037 · doi:10.1016/0045-7825(89)90003-0
[10] Benson DJ (1992a) Computational methods in Lagrangian and Eulerian hydrocodes. Comput Meth Appl Mech Eng 99:235–394 · Zbl 0763.73052 · doi:10.1016/0045-7825(92)90042-I
[11] Benson DJ (1992b) Momentum advection on a staggered mesh. J Comput Phys 100:143–162 · Zbl 0758.76038 · doi:10.1016/0021-9991(92)90316-Q
[12] Benson DJ (1997) A mixture theory for contact in multi-material Eulerian formulations. Comput Meth Appl Mech Eng 140:59–86 · Zbl 0892.73048 · doi:10.1016/S0045-7825(96)01050-X
[13] Benson DJ (1998) Eulerian finite element methods for the micromechanics of heterogeneous materials: dynamic prioritization of material interfaces. Comput Meth Appl Mech Eng 151:343–360 · Zbl 0906.73059 · doi:10.1016/S0045-7825(97)00157-6
[14] Benson DJ (2000) An implicit multi-material Eulerian formulation. Int J Numer Meth Eng 48:475–499 · Zbl 0985.74067 · doi:10.1002/(SICI)1097-0207(20000610)48:4<475::AID-NME881>3.0.CO;2-U
[15] Benson DJ (2002) Volume of fluid interface reconstruction methods for multi-material problems. Appl Mech Rev 52(2):151–165 · doi:10.1115/1.1448524
[16] Boris JP, Book DL (1976) Flux-corrected transport. III - minimal-error FCT algorithms. J Comput Phys 20:397–431 · Zbl 0325.76037 · doi:10.1016/0021-9991(76)90091-7
[17] Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin Formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Meth Appl Mech Eng 32:199–259 · Zbl 0497.76041 · doi:10.1016/0045-7825(82)90071-8
[18] Chakravarthy SR, Osher S. (1985). A new class of high accuracy TVD schemes for hyperbolic conservation Laws. AIAA. 85-0363
[19] Chock D (1985) A comparison of numerical methods for solving the advection equation. Atmos Environ 19:571–586 · Zbl 0589.65072 · doi:10.1016/0004-6981(85)90036-8
[20] Chorin AJ, Hughes TJR, McCracken MF, Marsden JE (1978) Product formulas and numerical algorithms. Commun Pure Appl Math 31:205–256 · Zbl 0369.65025 · doi:10.1002/cpa.3160310205
[21] Cockburn B, Shu CW (2001) Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J Sci Comput 16:173–261 · Zbl 1065.76135 · doi:10.1023/A:1012873910884
[22] Donea J (1983) Arbitrary Lagrangian–Eulerian finite element methods. In: Belytschko T, Hughes TJR (eds) Computational methods for transient analysis, chap. 10. Elsevier, NewYork, USA · Zbl 0536.73062
[23] Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley, New York
[24] Dukowicz JK (1988) Efficient volume computation for three-dimensional hexahedral cells. J Comput Phys 74:493–496 · Zbl 0644.65019 · doi:10.1016/0021-9991(88)90091-5
[25] Gadala MS, Movahhedy MR, Wang J (2002) On the mesh motion for ALE modeling of metal forming processes. Finite Elem in Anal Des 38:435–459 · Zbl 1079.74636 · doi:10.1016/S0168-874X(01)00080-4
[26] Ganzha VG, Vorozhtsov EV (1996) Numerical solutions for partial differential equations. CRC, Boca Raton, New York
[27] Ghosh S, Kikuchi N (1991) An arbitrary Lagrangian–Eulerian finite element method for large deformation analysis of elastic-viscoplastic solids. Comput Meth Appl Mech Eng 86:127–188 · Zbl 0825.73687 · doi:10.1016/0045-7825(91)90126-Q
[28] Gross D, Seelig Th. (2001) Bruchmechanik mit einer Einführung in die Mikromechanik. 3. Springer-Verlag, Auflage · Zbl 1345.74002
[29] Gueyffier D, Li J, Nadim A, Scardovelli R, Zaleski S (1999) Volume of fluid interface tracking with smoothed surface stress methods for three-dimensional flows.J Comput Phys 152:423–456 · Zbl 0954.76063 · doi:10.1006/jcph.1998.6168
[30] Harten A (1983) High resolution schemes for hyperbolic conservation laws. J Comput Phys 49(3):357 · Zbl 0565.65050 · doi:10.1016/0021-9991(83)90136-5
[31] Hinton E, Campbell JS (1974) Local and global smoothing of discontinuous finite element functions using a least square method. Int J Numer Meth Eng 8:461–480 · Zbl 0286.73066 · doi:10.1002/nme.1620080303
[32] Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225 · Zbl 0462.76020 · doi:10.1016/0021-9991(81)90145-5
[33] Huetink J. (1982). Analysis of metal forming processes based on a combined Eulerian–Lagrangian finite element formulation. In: International conference on numerical methods in industrial forming processes. pp 501–509
[34] Huetink J, Vreede PT, Van der Lugt J (1990) Progress in mixed Eulerian–Lagrangian finite element simulation of forming processes. Int J Numer Meth Eng 30:1441–1457 · Zbl 0716.73086 · doi:10.1002/nme.1620300808
[35] Hughes TJR (1979) Finite element methods for convection dominated flows. ASME Monograph AMD-34 ASME New York
[36] Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Meth Appl Mech Eng 29:239–349 · Zbl 0482.76039 · doi:10.1016/0045-7825(81)90049-9
[37] Hughes TJR, Tezduyar TE (1984) Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Comput Meth Appl Mech Eng 45:217–284 · Zbl 0542.76093 · doi:10.1016/0045-7825(84)90157-9
[38] Johnson AA, Tezduyar TE (1999) Advanced mesh generation and update methods for 3D flow simulations. Comput Mech 23:130–143 · Zbl 0949.76049 · doi:10.1007/s004660050393
[39] Kothe DB, Williams MW, Lam KL, Korzekwa DR, Tubesing PK, Puckett EG (1999) A second-order accurate, linearity-preserving volume tracking algorithm for free surface flows on 3-D unstructured meshes. In: Proceedings of the 3rd ASME/JSME joint fluids engineering conference, San Francisco, California, USA, fEDSM99-7109
[40] Lax P, Wendroff B (1960) System of conservation laws. Commun Pure Appl Math 13:217–237 · Zbl 0152.44802 · doi:10.1002/cpa.3160130205
[41] Van Leer B (1977) Towards the ultimate conservative difference scheme. IV a new approach to numerical convection. J Comput Phys 23:276–299 · Zbl 0339.76056 · doi:10.1016/0021-9991(77)90095-X
[42] Liu WK, Belytschko T, Chang H (1986) An arbitrary Lagrangian–Eulerian finite element method for path-dependent materials. Comput Meth Appl Mech Eng 58:227–245 · Zbl 0595.73075 · doi:10.1016/0045-7825(86)90097-6
[43] Liu WK, Chang H, Chen JS, Belytschko T (1988) Arbitrary Lagrangian–Eulerian Petrov-Galerkin finite elements for nonlinear continua. Comput Meth Appl Mech Eng 68:259–310 · Zbl 0626.73076 · doi:10.1016/0045-7825(88)90011-4
[44] Löhner R (2001) Applied CFD techniques – an introduction based on finite element methods.Wiley, New York
[45] Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice Hall, Inc., Englwwood Cliffs
[46] Noh WF, Woodward P (1976) SLIC (simple line interface calculation). In: Proceedings of the 5th international conference on numerical methods in fluid dynamics. Twente University, Enschede, June 28 - July 2
[47] Ortiz M, Quigley JJ (1991) Adaptive mesh refinement in strain localization problems. Comput Meth Appl Mech Eng 90:781–804 · doi:10.1016/0045-7825(91)90184-8
[48] Osher S (1985) Convergence of generalized MUSCL schemes. SIAM J Numer Anal 22:947–961 · Zbl 0627.35061 · doi:10.1137/0722057
[49] Peery JS, Carroll DE (2000) Multi-material ALE methods in unstructured grids. Comput Meth Appl Mech Eng 187:591–619 · Zbl 0980.74068 · doi:10.1016/S0045-7825(99)00341-2
[50] Popinet S, Zaleski S (1999) A front-tracking algorithm for accurate representation of surface tension. Inte J Numer Meth Fluids 30:775 · Zbl 0940.76047 · doi:10.1002/(SICI)1097-0363(19990730)30:6<775::AID-FLD864>3.0.CO;2-#
[51] Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran 77, The Art of Scientific Computing vol 1. Cambridge University Press, London
[52] Puckett EG. (1991). A numerical study of shock wave refraction at a CO2/CH4 Interface. In: Glimm F, Majda A. (ed). Multidimensional hyperbolic problems and computations, IMA volumes in mathematics and its applications, vol 29. Springer, Berlin Heidelberg New York. pp. 261–280
[53] Reese S, Wriggers P (2000) A stabilization technique to avoid hourglassing in finite elasticity. Int J Numer Meth Eng 48:79–109 · Zbl 0983.74070 · doi:10.1002/(SICI)1097-0207(20000510)48:1<79::AID-NME869>3.0.CO;2-D
[54] Rider WJ, Kothe DB (1998) Reconstructing volume tracking. J Comput Phys 141(2):112–152 · Zbl 0933.76069 · doi:10.1006/jcph.1998.5906
[55] Roache PJ (1976) Computational fluid dynamics. Hermosa Publishers, Alburquerque, New Mexico
[56] Rodriguez-Ferran A, Casadei F, Huerta A (1998) ALE stress update for transient and quasistatic processes. Int J Numer Meth Eng 43:241–262 · Zbl 0933.74064 · doi:10.1002/(SICI)1097-0207(19980930)43:2<241::AID-NME389>3.0.CO;2-D
[57] Rodriguez-Ferran A, Perez-Foguet A, Huerta A (2002) Arbitrary Lagrangian–Eulerian (ALE) formulation for hyperelastoplasticity. Int J Numer Meth Eng 53:1831–1851 · Zbl 1169.74630 · doi:10.1002/nme.362
[58] Rood RB (1987) Numerical advection algorithms and their role in atmospheric transport and chemistry models. Rev Geophys 25(1):71–100 · doi:10.1029/RG025i001p00071
[59] Rudman M (1997) Volume tracking methods for interfacial flow calculations. Int J Numer Meth Fluids 24:671–691 · Zbl 0889.76069 · doi:10.1002/(SICI)1097-0363(19970415)24:7<671::AID-FLD508>3.0.CO;2-9
[60] Sweby PK (1984) High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J Numer Anal 21:995–1011 · Zbl 0565.65048 · doi:10.1137/0721062
[61] Tezduyar TE, Liou J, Ganjoo DK (1990) Incompressible flow computations based on the vorticity-stream function and velocity-pressure formulation. Comput Struct 35:445–472 · Zbl 0719.76051 · doi:10.1016/0045-7949(90)90069-E
[62] Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44 · Zbl 0747.76069 · doi:10.1016/S0065-2156(08)70153-4
[63] Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Meth Eng 8:83–130 · Zbl 1039.76037 · doi:10.1007/BF02897870
[64] Tóth G, Odstrěil D (1996) Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems. J Comput Phys 82:82–100 · Zbl 0860.76061 · doi:10.1006/jcph.1996.0197
[65] Truesdell C, Noll W (1965) The non-linear field theories of mechanics, Handbuch der Physik, chap III/3. Springer, Berlin Heidelberg New York
[66] Wang Y, Hutter K (2001) Comparisons of numerical methods with respect to convectively dominated problems. Int J Numer Meth Fluids 37:721–745 · Zbl 0999.76100 · doi:10.1002/fld.197
[67] Youngs DL (1982) Time-dependent multi-material flow with large fluid distortion. In: Morton K, Baines M (eds) Numerical methods for fluid dynamics, Academic, New York, pp 273–285
[68] Youngs DL (1987) An interface tracking method for a 3D Eulerian hydrodynamics code. Tech. rep., AWRE Design Math Div, aWRE/44/92/35
[69] Zienkiewicz OC, Xi-Kui L, Nakazawa S (1985) Iterative solution of mixed problems and stress recovery procedures. Comput Appl Numer Meth 1:3–9 · Zbl 0586.73127 · doi:10.1002/cnm.1630010103
[70] Fressmann D (2005) On single- and multi-material arbitrary Lagrangian–Eulerian approaches with application to micromechanical problems at finite deformations. PhD thesis, Institute of Mechanics and Computational Mechanics, University of Hannover, Germany
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.