×

Kinetic model of alkane oxidation at high pressure from methane to \(n\)-heptane. (English) Zbl 1176.80087

Summary: This work describes the kinetic model of alkane oxidation which is the result of creating a united kinetic mechanism for a whole homologous series of hydrocarbons, in this case from methane to \(n\)-heptane. The detail kinetic model consists of 549 species and 2518 reactions. The developed mechanism was validated against experimental data from a shock tube. The kinetic model agrees well with the experimental data over a wide range of temperatures from 850 K to 1700 K at pressure up to 530 atm. The behaviour of alkane ignition at high pressure was interpreted with the help of the kinetic model.

MSC:

80A25 Combustion
80A30 Chemical kinetics in thermodynamics and heat transfer

Software:

CHEMKIN; SENKIN
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/S0010-2180(97)00005-9 · doi:10.1016/S0010-2180(97)00005-9
[2] DOI: 10.1016/0010-2180(84)90002-6 · doi:10.1016/0010-2180(84)90002-6
[3] DOI: 10.1016/0010-2180(95)00154-9 · doi:10.1016/0010-2180(95)00154-9
[4] DOI: 10.1016/S0010-2180(98)00111-4 · doi:10.1016/S0010-2180(98)00111-4
[5] DOI: 10.1016/j.combustflame.2003.09.002 · doi:10.1016/j.combustflame.2003.09.002
[6] Konnov A. A., Abstr. Symp. Pap. pp 317– (2000)
[7] DOI: 10.1007/BF01992196 · doi:10.1007/BF01992196
[8] DOI: 10.1023/B:CESW.0000013666.57744.5f · doi:10.1023/B:CESW.0000013666.57744.5f
[9] Frolov S. M., Combustion and Atmospheric Pollution pp 207– (2003)
[10] Warnatz, J. The structure of laminar alkane- alkene- and acetylene flames. 18th Symposium (International) on Combustion, The Combustion Institute. pp.371–396. Pittsburg
[11] Warnatz J., Combustion (1996) · doi:10.1007/978-3-642-97668-1
[12] Warnatz, J. 1991.Simulation of ignition processes, Edited by: Larrouturou, B. 172Singapore: Recent Advances in Combustion Modeling, World Scientific.
[13] DOI: 10.1016/0160-9327(96)10004-1 · doi:10.1016/0160-9327(96)10004-1
[14] DOI: 10.1016/S1540-7489(02)80284-X · doi:10.1016/S1540-7489(02)80284-X
[15] DOI: 10.1016/S0010-2180(99)00011-5 · doi:10.1016/S0010-2180(99)00011-5
[16] DOI: 10.1016/S0010-2180(98)00151-5 · doi:10.1016/S0010-2180(98)00151-5
[17] DOI: 10.1016/0010-2180(94)00184-T · doi:10.1016/0010-2180(94)00184-T
[18] DOI: 10.1016/0010-2180(95)00091-J · doi:10.1016/0010-2180(95)00091-J
[19] DOI: 10.1016/S0010-2180(97)00282-4 · doi:10.1016/S0010-2180(97)00282-4
[20] Koert, D. N., Pitz, W. J., Bozelli, J. W. and Cernansky, N. P. Chemical kinetic modeling of high pressure propane oxidation and comparison to experimental results. 27th Symposium (International) on Combustion. pp.633Pittsburgh: The Combustion Institute.
[21] DOI: 10.1016/S0010-2180(97)00275-7 · doi:10.1016/S0010-2180(97)00275-7
[22] DOI: 10.1016/S0010-2180(01)00373-X · doi:10.1016/S0010-2180(01)00373-X
[23] Westbrook, C. K. and Dryer, F. L. Chemical kinetics and modeling of combustion processes. 18th Symposium (International) on Combustion. pp.749Pittsburg: The Combustion Institute.
[24] Axelsson, E. I., Brezinsky, K., Pitz, W. J., Westbrook, C. K. and Dryer, F. L. Chemical kinetic modeling of the oxidation of large alkane fuels:n-octane and iso-octane. 21th Symposium (International) on Combustion. pp.783Pittsburg: The Combustion Institute.
[25] Warnatz, J., Pitz, W. J. and Westbrook, C. K. A detailed chemical kinetic reaction mechanism for the oxidation iso-octane andn-heptane over an extended temperature range. 22th Symposium (International) on Combustion. pp.893Pittsburg: The Combustion Institute.
[26] DOI: 10.1021/ef060092z · doi:10.1021/ef060092z
[27] DOI: 10.1016/j.combustflame.2004.01.011 · doi:10.1016/j.combustflame.2004.01.011
[28] DOI: 10.1016/j.proci.2006.08.001 · doi:10.1016/j.proci.2006.08.001
[29] DOI: 10.2514/1.2323 · doi:10.2514/1.2323
[30] DOI: 10.1002/1097-4601(2000)32:10<589::AID-KIN2>3.0.CO;2-U · doi:10.1002/1097-4601(2000)32:10<589::AID-KIN2>3.0.CO;2-U
[31] DOI: 10.1080/00102209508907810 · doi:10.1080/00102209508907810
[32] DOI: 10.1016/S0082-0784(00)80610-4 · doi:10.1016/S0082-0784(00)80610-4
[33] DOI: 10.1016/S0010-2180(00)00130-9 · doi:10.1016/S0010-2180(00)00130-9
[34] DOI: 10.1016/j.combustflame.2005.03.005 · doi:10.1016/j.combustflame.2005.03.005
[35] DOI: 10.1016/S0360-1285(03)00060-1 · doi:10.1016/S0360-1285(03)00060-1
[36] DOI: 10.1023/A:1026186231905 · doi:10.1023/A:1026186231905
[37] DOI: 10.1007/s10975-005-0079-7 · doi:10.1007/s10975-005-0079-7
[38] DOI: 10.1016/j.combustflame.2004.11.008 · doi:10.1016/j.combustflame.2004.11.008
[39] DOI: 10.1016/j.combustflame.2003.10.002 · doi:10.1016/j.combustflame.2003.10.002
[40] Luts A. E., SENKIN: A FORTRAN program for predicting homogeneous gas-phase chemical kinetics with sensitivity analysis (1989)
[41] Kee R. J., CHEMKIN II: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical kinetics (1989)
[42] DOI: 10.2514/2.5394 · doi:10.2514/2.5394
[43] DOI: 10.1016/0010-2180(93)90142-P · doi:10.1016/0010-2180(93)90142-P
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.