×

Recent advances on virtual human synthesis. (English) Zbl 1192.68705

Summary: Virtual human is a digital representation of the geometric and behavioral property of human beings in the virtual environment generated by computer. The research goal of virtual human synthesis is to generate realistic human body models and natural human motion behavior. This paper introduces the development of the related researches on these two topics, and some progresses on example based human modeling and motion synthesis, and their applications in Chinese sign language teaching, computer aided sports training and public safety problem studying. Finally, some hot research topics in virtual human synthesis are presented.

MSC:

68T45 Machine vision and scene understanding

Software:

SCAPE
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wang Z. Study on synthesis of virtual human (in Chinese). J Graduate School of the Chinese Academy of Sciences, 2000, 17(2): 89–98
[2] Zhao Q P. A survey on virtual reality. Sci China Ser F-Inf Sci, 2009, 52(3): 348–400 · Zbl 1191.68741 · doi:10.1007/s11432-009-0066-0
[3] Fetter W A. A progression of human figures simulated by computer graphics. IEEE Comput Graph Appl, 1982, 2(9): 9–13 · Zbl 05331341 · doi:10.1109/MCG.1982.1674468
[4] Badler N I, Phillips C B, Webber B L. Simulating Humans: Computer Graphics, Animation, and Control. London: Oxford University Press, 1999 · Zbl 0925.68471
[5] Koechling J, Crane A, Raibert M. People are not tanks: live reckoning for simulated dismounted infantry using di-guy. In: Proceedings of Fall Simulation Interoperability Workshop, Orlando FL, Sep. 8, 1997
[6] Magnenat-Thalmann N, Thalmann D. An overview of virtual humans. Handbook of Virtual Humans. New York: John Wiley, 2004. 1–25 · Zbl 1062.68585
[7] Badler N I, O’Rourke J, Toltzis H. A spherical representation of a human body for visualizing movement. Proc IEEE, 1979, 67(10): 1397–1403 · doi:10.1109/PROC.1979.11475
[8] Scheepers F, Parent R E, Carlson W E, et al. Anatomy-based modeling of the human musculature. In: Computer Graphics (SIGGRAPH97 Proceedings), August 1997. 163–172
[9] Wilhelms J, Gelder A V. Anatomically based modeling. In: Computer Graphics (SIGGRAPH97 Proceedings), August 1997. 173–180
[10] Aubel A, Thalmann D. MuscleBuilder: a modeling tool for human anatomy. J Comp Sci Tech, 2004, 19(5): 585–595 · Zbl 02178812 · doi:10.1007/BF02945584
[11] Hilton D, Beresford T, Gentils R S, et al. Virtual people: capturing human models to populate virtual worlds. In: Werner B, ed. Computer Animation. Piscataway, NJ: IEEE Computer Society Press, 1999. 174–185
[12] Lee W, Gu J, Magnenat-Thalmann N. Generating animatable 3D virtual humans from photographs. Comput Graph Forum, Proceedings of Eurographics’2000 Interlaken, Switzerland, August, 2000, 19(3): 1–10
[13] Mao T, Wang Z. A method for virtual body cloning from photographs (in Chinese). J Comput Res Devel, 2002, 39(suppl): 39–44
[14] Dekker L, Douros I, Buxton B F, et al. Building symbolic information for 3D human body modeling from range data. In: Proceedings of the Second International Conference on 3D Digital Imaging and Modeling, IEEE Computer Society, 1999. 388–397
[15] Wade L, Parent R E. Automated generation of control skeletons for use in animation. Visual Comput, 2002, 18(2): 97–110 · Zbl 1002.68749 · doi:10.1007/s003710100139
[16] Ma Y, Zhang H, Jiang S. Realistic modeling and animation of human body based on scanned data. J Comput Sci Tech, 2004, 19(4): 529–537 · Zbl 02180024 · doi:10.1007/BF02944754
[17] Gutiérrez M, García-Rojas A, Thalmann D, et al. An ontology of virtual humans: incorporating semantics into human shapes. Visual Comput, 2007, 23(3): 207–218 · Zbl 05192822 · doi:10.1007/s00371-006-0093-4
[18] Baran I, Popovic J. Automatic rigging and animation of 3D characters. ACM Trans Graph, 2007, 26(3): 72 · Zbl 05457702 · doi:10.1145/1276377.1276467
[19] Blanz V, Vetter T. A morphable model for the synthesis of 3D faces. In: Computer Graphics Proceedings of SIGGRAPH99, 1999. 187–194
[20] Sloan P J, Rose C F, Cohen M F. Shape by example. In: Proceedings of the 2001 Symposium on interactive 3D Graphics I3D’ 01. New York: ACM, 2001. 135–143
[21] Allen B C, Popovic Z. Articulated body deformation from range scan data. In: Proceedings SIGGRAPH 2002, Addison-Wesley, 2002. 612–619
[22] Seo H, Cordier F, Magnenat-Thalmann N. Synthesizing animatable body models with parameterized shape modifications. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2003. 120–125
[23] Li Y, Wang Z, Mao T. A survey of virtual human skin deformation (in Chinese). J Comput Res Devel, 2005, 42(5): 888–896 · doi:10.1360/crad20050526
[24] Anguelov D, Srinivasan P, Koller D, et al. SCAPE: Shape completion and animation of people. ACM Trans Graph, 2005, 24(3): 408–416 · Zbl 05457190 · doi:10.1145/1073204.1073207
[25] Park S II, Hodgins J K. Capturing and animating skin deformation in human motion. ACM Trans Graph, 2006, 25(3): 881–889 · Zbl 05457518 · doi:10.1145/1141911.1141970
[26] Balan A O, Sigal L, Black M J, et al. Detailed human shape and pose from images. In: Computer Vision and Pattern Recognition. NJ USA: IEEE Press, 2007. 1–8
[27] Yu Y, Mao T, Xia S, et al. A Pose-Independent method of animating scanned human bodies. In: Computer Graphics International Conference, 2008. 232–239
[28] McCann J, Pollard N S, Srinivasa S. Physics-based motion retiming. In: Proceedings of the 2006 ACM Siggraph/Eurographics Symposium on Computer Animation, 2006. 205–214
[29] Hsu E, Silva M D, Popovic J. Guided time warping for motion editing. In: Proceedings of the 2007 ACM Siggraph/Eurographics Symposium on Computer Animation, August 02–04, 2007. 45–52
[30] Johnson M P. Exploiting quaternions to support expressive interactive character motion. Ph.D. dissertation, USA: Massachusetts Institute of Technology, 2003
[31] Li C, Wang Z, Xia S, et al. Inverse kinematics using local support poses (in Chinese). Chinese J Comput, 2007, 30(11): 1982–1988
[32] Whitney D E. Resolved motion rate control of manipulators and human prostheses. IEEE Trans Man-Mach Syst, 1969, MMS-10(2): 47–53 · doi:10.1109/TMMS.1969.299896
[33] Wampler C W. Manipulator inverse kinematic solutions based on vector formulations and damped least squares methods. IEEE Trans Sys Man Cybernet, 1986, SMC(16): 93–101 · Zbl 0585.70030 · doi:10.1109/TSMC.1986.289285
[34] Komura T, Kuroda A, Kudoh S, et al. An inverse kinematics method for 3D figures with motion data. In: Proceedings of Computer Graphics International, July, 2003. 266–271
[35] Li C, Xia S, Wang Z. Pose synthesis using the inverse jacobian matrices learned from examples. In: IEEE VR, 2007. 99–106
[36] Zhao J, Badler N I. Inverse kinematics positioning using nonlinear programming for highly articulated figures. ACM Trans Graph, 1994, 13(4): 313–336 · doi:10.1145/195826.195827
[37] Tak S, Ko H. Example guided inverse kinematics. In: Proceedings of International Conference on Computer Graphics and Imaging, 2000. 19–23
[38] Featherstone R, Orin D. Robot dynamics: equations and algorithms. In: Proceedings of IEEE ICRA 2000, 2000. 826–834
[39] Featherstone R. Robot Dynamics Algorithms. Norwell, MA: Kluwer Academic Publishers, 1987. 1–211
[40] Oshita M, Makinouchi A. A dynamic motion control technique for human-like articulated figures. Comput Graph Forum, 2001, 20(3): 192–202 · Zbl 02180192 · doi:10.1111/1467-8659.00512
[41] Safonova A, Hodgins J K, Pollard N S. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. In: Proceedings of SIGGRAPH 2004, 2004. 514–521
[42] Nikravesh P. Computer-aided Analysis of Mechanical Systems. EngleWood Cliffs, New Jersey: Perntice Hall, 1988. 1–370
[43] Liu Z C. Efficient animation techniques balancing both user control and physical realism. Ph. D. dissertation, USA: Princeton University, 1996
[44] Guenter B. Efficient symbolic differentiation for graphics applications. ACM Trans Graph, 2007, 26(3): 1–12 · Zbl 05457700 · doi:10.1145/1276377.1276512
[45] Hollerbach J. A recursive lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity. IEEE Trans Syst Man Cybernet, 1980, SMC-10(11): 730–736
[46] Popovic Z. Motion transformation by physically based spacetime optimization. Ph. D. dissertation, USA: Carnegie Mellon University, 1999
[47] Armstrong W W, Green M. The dynamics of articulated rigid bodies for the purposes of animation. Visual Comput, 1985, 1(4): 231–240 · doi:10.1007/BF02021812
[48] Wilhelms J. Using dynamic analysis for realistic animation of articulated bodies. IEEE Compu Graph Appl, 1987, 7(6): 12–27 · doi:10.1109/MCG.1987.276893
[49] Isaacs P M, Cohen M F. Controlling dynamic simulation with kinematic constraints, behavior functions and inverse dynamics. Comput Graph, 1987, 21(4): 215–224 · doi:10.1145/37402.37428
[50] Armstrong W W, Green M, Lake R. Near-real-time control of human figure models. IEEE Comput Graph Appl, 1987, 7(6): 52–61 · doi:10.1109/MCG.1987.276896
[51] McKenna M, Zeltzer D. Dynamic simulation of autonomous legged locomotion. Comput Graph, 1990, 24(4): 29–38 · doi:10.1145/97880.97882
[52] Witkin A, Kass M. Spacetime constraints. In: Proceedings of SIGGRAPH 1988, 1988. 159–168 · Zbl 0646.68105
[53] Liu Z C, Gortler S J, Cohen M F. Hierarchical spacetime control. In: Proceedings of SIGGRAPH 1994, 1994. 35–42
[54] Yang F, Yuan X. Computational simulation of human motion based on comfort level maximization (in Chinese). J Computaided Des Comput Graph, 2005, 17(2): 267–272
[55] Gleicher M. Motion editing with spacetime constraints. In: Proceedings of Symposium on Interactive 3D Graphics, 1997. 139–148
[56] Sulejmanpasic A, Popovic J. Adaptation of performed ballistic motion. ACM Trans Graph, 2005, 24(1): 165–179 · Zbl 05457608 · doi:10.1145/1037957.1037966
[57] Fang A C, Pollard N S. Efficient synthesis of physically valid human motion. ACM Trans Graph, 2003, 22(3): 417–426 · Zbl 05457308 · doi:10.1145/882262.882286
[58] Cohen M F. Interactive spacetime control for animation. Compu Graph, 1992, 26(2): 293–302 · doi:10.1145/142920.134083
[59] Popovic Z, Witkin A. Physically based motion transformation. In: Proceedings of SIGGRAPH 1999, 1999. 11–20
[60] Liu C K, Hertzmann A, Popovic Z. Composition of complex optimal multi-character motions. In: Proceedings of ACM SIGGRAPH/Eurographics symposium on Computer animation, 2006. 215–222
[61] Smith J. Three applications of optimization in computer graphics. Ph. D. Dissertation, USA: Carnegie Mellon University, 2003
[62] Raibert M H, Hodgins J K. Animation of dynamic legged locomotion. Comput Graph, 1991, 25(4): 349–358 · doi:10.1145/127719.122755
[63] Hodgins J K, Sweeney P K, Lawrence D G. Generating natural looking motion for computer animation. In: Proceedings of Graphics Interface 1992, 1992. 265–272
[64] Hodgins J K. Simulation of human running. In: Proceedings of IEEE International Conference on Robotics and Automation 1994, 1994. 1320–1325
[65] Hodgins J K, Wooten W, Brogan D C, et al. Animating human athletics. In: Proceedings of SIGGRAPH 1995, 1995. 71–78
[66] Hodgins J K, Pollard N S. Adapting simulated behaviours for new characters. In: Proceedings of SIGGRAPH 1997, 1997. 153–162
[67] Liu C K, Hertzmann A, Popovic Z. Learning physics-based motion style with nonlinear inverse optimization. In: Proceedings of SIGGRAPH 2005, 2005. 1071–1081
[68] Laszlo J, Van De Panne M, Fiume E. Limit cycle control and its application to the animation of balancing and walking. In: Proceedings of SIGGRAPH 1996, 1996. 155–162
[69] Sok K W, Kim M, Lee J. Simulating biped behaviors from human motion data. ACM Trans Graph, 2007, 26(3): 1–9 · Zbl 05457752 · doi:10.1145/1276377.1276511
[70] Faloutsos P, Van De Panne M, Terzopoulos D. Composable controllers for physics-based character animation. In: Proceedings of SIGGRAPH 2001, 2001. 251–260
[71] Singla P, Mortari D, Junkins J. How to avoid singularity for Euler angle set? In: AAS/AIAA Space Flight Mechanics Meeting Conference, 2004
[72] Wei Y, Xia S, Zhu D, et al. A robust method for analyzing the physical correctness of motion capture data. In: Proceedings of the 2006 ACM Virtual Reality Software and Technology. New York: ACM Press, 2006. 338–341
[73] Wei Y, Xia S, Wang Z. Physics-based simulation of human motion in flight (in Chinese). J Software, 2008, 19(12): 1–8
[74] Wei Y. Reasearch on dynamics-based simulation of human motion in flight (in Chinese). Ph.D. dissertation. Beijing: Institute of Computing Technology, Chinese Academy of Science, 2008
[75] Wang Z, Gao W. A method to synthesize chinese sign language based on virtual human technologies (in Chinese). J Software, 2002, 13(10): 2051–2056
[76] Xia S, Qiu X, Wang Z. A novel framework for athlete training based on interactive motion editing and silhouette analysis. In: Proceedings of ACM Virtual Reality Software and Technology (VRST), 2005. 56–58
[77] Wang Z, Zhang Y, Xia S. 3D human motion simulation and a video analysis system for sports training (in Chinese). J Comput Res Devel, 2005, 42(2): 344–352 · doi:10.1360/crad20050224
[78] Wang Z, Xia S, Qiu X, et al. Digital 3D trampoline simulation system-VHTrampoline (in Chinese). Chinese J Comput, 2007, 30(3): 498–505
[79] Wen G, Wang Z, Xia S, et al. Least-squares fitting of multiple M-dimensional point sets. Visual Comput, 2006, 22(6): 387–398 · Zbl 05074907 · doi:10.1007/s00371-006-0022-6
[80] Wen G, Wang Z, Xia S, et al. From motion capture data to character animation. In: Proceedings of ACM Virtual Reality Software and Technology (VRST), 2006. 165–168
[81] Qiu X, Wang Z, Xia S, et al. A virtual-real comparision method used for sport simulation and analysis (in Chinese). J Comput Res Devel, 2005, 42(8): 1324–1330 · doi:10.1360/crad20050807
[82] Wang J, Wang Z, Li C, et al. Hierarchical obstacle avoidance for crowd simulation (in Chinese). J Comput Res Devel, 2007, 44(12): 2058–2065 · doi:10.1360/crad20071210
[83] Xu W, Mao T, Shu B, et al. Point-based rendering of largescale 3d models (in Chinese). Comput Simul, 2007, 24(5): 193–197
[84] Mao T, Shu B, Xu W, et al. CrowdViewer: from simple script to large-scale virtual crowds. In: Proceedings of ACM Virtual Reality Software and Technology (VRST), 2007. 113–116 XIA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.