×

KADATH: a spectral solver for theoretical physics. (English) Zbl 1187.83056

Summary: KADATH is a library that implements spectral methods in a very modular manner. It is designed to solve a wide class of problems that arise in the context of theoretical physics. Several types of coordinates are implemented and additional geometries can be easily encoded. Partial differential equations of various types are discretized by means of spectral methods. The resulting system is solved using a Newton-Raphson iteration. Doing so, KADATH is able to deal with strongly non-linear situations. The algorithms are validated by applying the library to four different problems of contemporary physics, in the fields of gauge field theory and general relativity.

MSC:

83C75 Space-time singularities, cosmic censorship, etc.
83C57 Black holes
83-08 Computational methods for problems pertaining to relativity and gravitational theory
35L15 Initial value problems for second-order hyperbolic equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Gottlieb, J. A.; Orzag, S. A., Numerical analysis of spectral methods: theory and applications, Region. Conf. Ser. Appl. Math, vol. 26 (1977), SIAM
[2] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods in Fluid Dynamics (1988), Springer: Springer Berlin, New York · Zbl 0658.76001
[3] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods: Fundamentals in Single Domains (2007), Springer: Springer Berlin, New York
[4] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (2007), Springer: Springer Berlin, New York · Zbl 1121.76001
[5] Fornberg, B., Practical Guide to Pseudospectral Methods (1995), Cambridge University Press: Cambridge University Press Cambridge, New York
[6] Boyd, J. B., Chebyshev and Fourier Spectral Methods (2001), Dover Publications: Dover Publications Mineola, New York · Zbl 0994.65128
[7] P. Grandclément, J. Novak, Spectral methods in numerical relativity, Living Reviews in Relativity, lrr-2009-1, 2009.; P. Grandclément, J. Novak, Spectral methods in numerical relativity, Living Reviews in Relativity, lrr-2009-1, 2009.
[8] <http://www.lorene.obspm.fr/>; <http://www.lorene.obspm.fr/>
[9] Pfeiffer, H. P.; Kidder, L. E.; Scheel, M. A.; Teukolsky, S. A., A multidomain spectral method for solving elliptic equations, Comput. Phys. Commun., 152, 253-273 (2003) · Zbl 1196.65179
[10] Ansorg, M.; Kleinwätcher, A.; Meinel, R., Highly accurate calculation of rotating neutron stars: detailed description of the numerical methods, Astron. Astrophys., 405, 711-721 (2003)
[11] Ansorg, M., Double-domain spectral method for black hole excision data, Phys. Rev. D, 72, 024018 (2005)
[12] LateX web-site: <http://www.latex-project.org>; LateX web-site: <http://www.latex-project.org>
[13] <http://luth.obspm.fr/luthier/grandclement/kadath.html>; <http://luth.obspm.fr/luthier/grandclement/kadath.html>
[14] Bonazzola, S.; Gourgoulhon, E.; Mark, J.-A., Numerical approach for high precision 3D relativistic star models, Phys. Rev. D, 58, 04020 (1998)
[15] Bonazzola, S.; Gourgoulhon, E.; Mark, J.-A., Spectral methods in general relativistic astrophysics, J. Comput. Appl. Math., 109, 433-473 (1999) · Zbl 0961.85002
[16] Grandclément, P.; Bonazzola, S.; Gourgoulhon, E.; Mark, J.-A., A multidomain spectral method for scalar and vectorial poisson equations with noncompact sources, J. Comput. Phys., 170, 231-260 (2001) · Zbl 0988.65108
[17] Foucart, F.; Kidder, L. E.; Pfeiffer, H. P.; Teukolsky, S. A., Initial data for black hole-neutron star binaries: a flexible, high-accuracy spectral method, Phys. Rev. D, 77, 124051 (2008)
[18] W. Tichy, A new numerical method to construct binary neutron star initial data, preprint: arXiv:0908.0620.; W. Tichy, A new numerical method to construct binary neutron star initial data, preprint: arXiv:0908.0620. · Zbl 1176.83023
[19] Ansorg, M.; Bruegmann, B.; Tichy, W., A single-domain spectral method for black hole puncture data, Phys. Rev. D, 70, 064011 (2004)
[20] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), SIAM · Zbl 1002.65042
[21] ScaLapack web-site: <http://www.netlib.org/scalapack/>; ScaLapack web-site: <http://www.netlib.org/scalapack/>
[22] Lapack web-site: <http://www.netlib.org/lapack/>; Lapack web-site: <http://www.netlib.org/lapack/>
[23] Radu, E.; Volkov, M. S., Stationary ring solitons in field theory-knots and vortons, Phys. Rep., 468, 101-151 (2008)
[24] Witten, E., Superconducting strings, Nucl. Phys., B249, 557-592 (1985)
[25] Davis, R. L.; Shellard, E. P.S., The physics of vortex superconductivity, Phys. Lett. B, 207, 404-410 (1988)
[26] Davis, R. L.; Shellard, E. P.S., The physics of vortex superconductivity 2, Phys. Lett. B, 209, 484-490 (1988)
[27] Choptuik, M. W., Universality and scaling in gravitational collapse of a massless scalar field, Phys. Rev. Lett., 70 (1993)
[28] C. Gundlach, J.M. Martin-Garcia, Critical phenomena in gravitational collapse, Living Reviews in Relativity, lrr-2007-5, 2007.; C. Gundlach, J.M. Martin-Garcia, Critical phenomena in gravitational collapse, Living Reviews in Relativity, lrr-2007-5, 2007. · Zbl 1175.83037
[29] Gundlach, C., Understanding critical collapse of a scalar field, Phys. Rev. D, 55, 695-713 (1997)
[30] Martin-Garcia, J. M.; Gundlach, C., Global structure of Choptuiks critical solution in scalar field collapse, Phys. Rev. D, 68, 024011 (2003)
[31] B.S. Sathyaprakash, B.F. Schutz, Physics, Astrophysics and Cosmology with Gravitational Waves, Living Reviews in Relativity, lrr-2009-2, 2009.; B.S. Sathyaprakash, B.F. Schutz, Physics, Astrophysics and Cosmology with Gravitational Waves, Living Reviews in Relativity, lrr-2009-2, 2009. · Zbl 1166.85002
[32] D. Merrit, M. Milosavljević, Massive black hole binary evolution, Living Reviews in Relativity, lrr-2005-8, 2005.; D. Merrit, M. Milosavljević, Massive black hole binary evolution, Living Reviews in Relativity, lrr-2005-8, 2005.
[33] York, J. W., Kinematics and dynamics of general relativity, (Smarr, L. L., Sources of Gravitational Radiation (1979), Cambridge University Press: Cambridge University Press New York), 83-126
[34] G. Cook, Initial data for numerical relativity, Living Reviews in Relativity, lrr-2005-5, 2005.; G. Cook, Initial data for numerical relativity, Living Reviews in Relativity, lrr-2005-5, 2005.
[35] Caudill, M.; Cook, G. B.; Grigsby, J. D.; Pfeiffer, H. P., Circular orbits and spin in black-hole initial data, Phys. Rev. D, 74, 064011, 1-24 (2006)
[36] Bonazzola, S.; Gourgoulhon, E.; Marck, J.-A., A relativistic formalism to compute quasi-equilibrium configurations of non-synchronized neutron star binaries, Phys. Rev. D, 56, 7740 (1997)
[37] Gourgoulhon, E.; Grandclément, P.; Bonazzola, S.; Mark, J.-A., Binary black holes in circular orbits. I. A global spacetime approach, Phys. Rev. D, 65, 04420 (2002)
[38] Gourgoulhon, E.; Jaramillo, J. L., A 3+1 perspective on null hypersurfaces and isolated horizons, Phys. Rep., 423, 159 (2006)
[39] Gourgoulhon, E.; Grandclément, P.; Bonazzola, S.; Mark, J.-A., Binary black holes in circular orbits. II. Numerical methods and first results, Phys. Rev. D, 65, 04421 (2002)
[40] Vasset, N.; Novak, J.; Jaramillo, J. L., Excised black hole spacetimes: quasilocal horizon formalism applied to the Kerr example, Phys. Rev. D, 9, 124010 (2009)
[41] Kerr, R. P., Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett., 11, 237 (1963) · Zbl 0112.21904
[42] Garat, A.; Price, R. H., Nonexistence of conformally flat slices of the Kerr spacetime, Phys. Rev. D, 61, 124011 (2000)
[43] Pazos, E.; Tiglio, M.; Diez, M. D.; Kidder, L. E.; Teukolsky, S. A., Orbiting binary black hole evolutions with multipatch high order finite-difference approach, Phys. Rev. D, 80, 024027 (2009)
[44] Bonazzola, S.; Gourgoulhon, E.; Grandclément, P.; Novak, J., A constrained scheme for Einstein equations based on Dirac gauge and spherical coordinates, Phys. Rev. D, 70, 104007 (2004)
[45] Henning, J.; Ansorg, M., A fully pseudospectral scheme for solving singular hyperbolic equations, J. Hyper. Diff. Equat., 6, 161 (2009) · Zbl 1183.35016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.