×

Evaluating massive planar two-loop tensor vertex integrals. (English) Zbl 1191.81147

Summary: Using the parallel/orthogonal space method, we calculate the planar two-loop three-point diagram and two rotated reduced planar two-loop three-point diagrams. Together with the crossed topology, these diagrams are the most complicated ones in the two-loop corrections necessary, for instance, for the decay of the \(Z^{0}\) boson. Instead of calculating particular decay processes, we present a new algorithm which allows us to perform arbitrary next-to-next-to-leading order (NNLO) calculations for massive planar two-loop vertex functions in the general mass case. All integration steps up to the last two are performed analytically and will be implemented under xloops as part of the Mainz xloops-GiNaC project. The last two integrations are done numerically using methods like VEGAS and Divonne. Thresholds originating from Landau singularities are found and discussed in detail. In order to demonstrate the numerical stability of our methods we consider particular Feynman integrals which contribute to different physical processes. Our results can be generalized to the case of the crossed topology.

MSC:

81S40 Path integrals in quantum mechanics

Software:

GiNaC; xloops
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] W. Hollik, G. Duckeck, Electroweak Precision Tests at LEP (Springer, Berlin, 2000)
[2] D.Y. Bardin, J. Phys. G 29, 75 (2003)
[3] W. Hollik et al., Acta Phys. Polon. B 35, 2533 (2004)
[4] LEP Collaboration, Rep. No. CERN-PH-EP-2005-041 [arXiv:hep-ex/0509008], submitted to Phys. Rep.
[5] ECFA/DESY LC Physics Working Group, J.A. Aguilar-Saavedra et al., Rep. No. DESY-TESLA-2001-23 [arXiv:hep-ph/0106315]
[6] S. Heinemeyer, G. Weiglein, Electroweak precision tests with GigaZ. In Batavia 2000, Physics and Experiments with Future Linear e+e- Colliders. Rep. No. LC-TH-2001-001, pp. 511–514 [arXiv:hep-ph/0012364]
[7] G. Weiglein, Eur. Phys. J. C 33, S630 (2004)
[8] LHC/LC Study Group, G. Weiglein et al., Rep. No. SLAC-PUB-10764 [arXiv:hep-ph/0410364]
[9] S. Heinemeyer, Rep. No. CERN-PH-TH-2004-159 [arXiv:hep-ph/0408269]
[10] D. Kreimer, Phys. Lett. B 292, 341 (1992)
[11] N.I. Usyukina, A.I. Davydychev, Phys. Lett. B 348, 503 (1995)
[12] A.I. Davydychev, J.B. Tausk, Nucl. Phys. B 465, 507 (1996)
[13] J. Fujimoto, Y. Shimizu, K. Kato, T. Kaneko, Int. J. Mod. Phys. C 6, 525 (1995)
[14] A.A. Pivovarov, Phys. At. Nucl. 63, 1646 (2000); Yad. Fiz. 63N9, 1734 (2000)
[15] K.G. Chetyrkin, R. Harlander, J.H. Kühn, M. Steinhauser, Nucl. Instrum. Methods A 389, 354 (1997)
[16] S. Groote, J.G. Körner, A.A. Pivovarov, Phys. Lett. B 443, 269 (1998); Nucl. Phys. B 542, 515 (1999); Eur. Phys. J. C 11, 279 (1999); Phys. Rev. D 60, 061701 (1999); Phys. Rev. D 61, 071501 (2000); Phys. Rev. D 65, 036001 (2002); Eur. Phys. J. C 36, 471 (2004); Rep. No. MZ-TH-05-08 [arXiv:hep-ph/0506286]; S. Groote, A.A. Pivovarov, Nucl. Phys. B 580, 459 (2000)
[17] A. Ghinculov, Y.P. Yao, Nucl. Phys. B 516, 385 (1998); Phys. Rev. D 63, 054510 (2001)
[18] A.I. Davydychev, V.A. Smirnov, Nucl. Instrum. Methods A 502, 621 (2003)
[19] U. Aglietti, R. Bonciani, Nucl. Phys. B 668, 3 (2003); Nucl. Phys. B 698, 277 (2004)
[20] W. Bernreuther, R. Bonciani, T. Gehrmann, R. Heinesch, T. Leineweber, P. Mastrolia, E. Remiddi, Nucl. Phys. B 706, 245 (2005); Nucl. Phys. B 712, 229 (2005)
[21] R. Bonciani, P. Mastrolia, E. Remiddi, Nucl. Phys. B 661, 289 (2003); Erratum Nucl. Phys. B 702, 359 (2004); Nucl. Phys. B 676, 399 (2004); Nucl. Phys. B 690, 138 (2004); R. Bonciani, A. Ferroglia, P. Mastrolia, E. Remiddi, J.J. van der Bij, Nucl. Phys. B 701, 121 (2004) · Zbl 1198.81192
[22] M. Caffo, H. Czy\.z, E. Remiddi, Nucl. Phys. Proc. Suppl. 116, 422 (2003)
[23] P. Mastrolia, E. Remiddi, Nucl. Phys. Proc. Suppl. 116, 412 (2003)
[24] S. Bauberger, F.A. Berends, M. Böhm, M. Buza, Nucl. Phys. B 434, 383 (1995); S. Bauberger, M. Böhm, G. Weiglein, F.A. Berends, M. Buza, Nucl. Phys. Proc. Suppl. 37B, 95 (1994)
[25] P. Post, Ph.D. thesis, Mainz University, 1997
[26] P. Post, J.B. Tausk, Mod. Phys. Lett. A 11, 2115 (1996)
[27] H.S. Do, Ph.D. thesis, Mainz University, 2003
[28] G. Passarino, Nucl. Phys. B 619, 257 (2001)
[29] A. Ferroglia, M. Passera, G. Passarino, S. Uccirati, Nucl. Phys. B 680, 199 (2004)
[30] S. Actis, A. Ferroglia, G. Passarino, M. Passera, S. Uccirati, Nucl. Phys. B 703, 3 (2004)
[31] W. Hollik, U. Meier, S. Uccirati, Rep. No. MPP-2005-77 [arXiv:hep-ph/0507158]
[32] M. Awramik, M. Czakon, A. Freitas, G. Weiglein, Phys. Rev. Lett. 93, 201805 (2004); Nucl. Phys. Proc. Suppl. 135, 119 (2004)
[33] D. Kreimer, Phys. At. Nucl. 56, 1546 (1993)
[34] A. Czarnecki, U. Kilian, D. Kreimer, Nucl. Phys. B 433, 259 (1995)
[35] A. Frink, U. Kilian, D. Kreimer, Nucl. Phys. B 488, 426 (1997)
[36] D. Kreimer, Mod. Phys. Lett. A 9, 1105 (1994)
[37] A.V. Kotikov, Phys. Lett. B 259, 314 (1991)
[38] J. Fleischer, A.V. Kotikov, O.L. Veretin, Phys. Lett. B 417, 163 (1998); Nucl. Phys. B 547, 343 (1999)
[39] V.A. Smirnov, E.R. Rakhmetov, Theor. Math. Phys. 120, 870 (1999); Teor. Mat. Fiz. 120, 64 (1999)
[40] T.G. Birthwright, E.W.N. Glover, P. Marquard, J. High Energy Phys. 0409, 042 (2004)
[41] J. Fleischer, V.A. Smirnov, A. Frink, J.G. Körner, D. Kreimer, K. Schilcher, J.B. Tausk, Eur. Phys. J. C 2, 747 (1998)
[42] A. Frink, Ph.D. thesis, Mainz University, 2000
[43] G.P. Lepage, Rep. No. CLNS-80/447
[44] T. Ohl, Comput. Phys. Commun. 120, 13 (1999)
[45] T. Hahn, Rep. No. MPP-2004-40 [arXiv:hep-ph/0404043]
[46] D. Kreimer, Nucl. Instrum. Methods A 389, 323 (1997)
[47] L. Brücher, Nucl. Instrum. Methods A 389, 327 (1997)
[48] J. Franzkowski, Nucl. Instrum. Methods A 389, 333 (1997)
[49] A. Frink, J.G. Körner, J.B. Tausk, Massive two-loop integrals and Higgs physics. In Proc. Joint Particle Physics Meet., Ouranoupolis, Greece, May 1997, pp. 175–200
[50] C. Bauer, H.S. Do, Comput. Phys. Commun. 144, 154 (2002)
[51] C. Bauer, A. Frink, R. Kreckel, Rep. No. MZ-TH/00-17 [arXiv:cs.sc/0004015]
[52] D. Kreimer, Z. Phys. C 54, 667 (1992)
[53] D. Kreimer, Int. J. Mod. Phys. A 8, 1797 (1993)
[54] A. Frink, Diploma thesis, Mainz University, 1996
[55] G. Passarino, M.J.G. Veltman, Nucl. Phys. B 160, 151 (1979)
[56] A. Andonov et al., arXiv:hep-ph/0411186
[57] R. Harlander, M. Steinhauser, Prog. Part. Nucl. Phys. 43, 167 (1999)
[58] U. Kilian, Ph.D. thesis, Mainz University, 1996
[59] L.D. Landau, Nucl. Phys. 13, 181 (1959)
[60] M. Böhm, A. Denner, H. Joos, Gauge Theory of the Strong and Electroweak Interaction (Teubner, Wiesbaden, 2001) · Zbl 0991.81001
[61] R.E. Cutkosky, J. Math. Phys. 1, 429 (1960)
[62] M.M. Knodel, Ph.D. thesis, Mainz University, 2005
[63] R.H. Kleiss, A. Lazopoulos, arXiv:hep-ph/0504085
[64] A.F.W. van Hameren, Ph.D. thesis, Nijmegen University, 2001 [arXiv:hep-ph/0101094]
[65] Particle Data Group, S. Eidelman et al., Phys. Lett. B 592, 1 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.