×

A global method for coupling transport with chemistry in heterogeneous porous media. (English) Zbl 1425.76231

Summary: Modeling reactive transport in porous media, using a local chemical equilibrium assumption, leads to a system of advection-diffusion PDEs coupled with algebraic equations. When solving this coupled system, the algebraic equations have to be solved at each grid point for each chemical species and at each time step. This leads to a coupled non-linear system. In this paper, a global solution approach that enables to keep the software codes for transport and chemistry distinct is proposed. The method applies the Newton-Krylov framework to the formulation for reactive transport used in operator splitting. The method is formulated in terms of total mobile and total fixed concentrations and uses the chemical solver as a black box, as it only requires that one be able to solve chemical equilibrium problems (and compute derivatives) without having to know the solution method. An additional advantage of the Newton-Krylov method is that the Jacobian is only needed as an operator in a Jacobian matrix times vector product. The proposed method is tested on the MoMaS reactive transport benchmark.

MSC:

76S05 Flows in porous media; filtration; seepage
76V05 Reaction effects in flows
76M25 Other numerical methods (fluid mechanics) (MSC2010)
35Q35 PDEs in connection with fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Achdou, Y., Le Tallec, P., Nataf, F., Vidrascu, M.: A domain decomposition preconditioner for an advection–diffusion problem. Comput. Methods Appl. Mech. Eng. 184(2–4), 145–170 (2000). doi: 10.1016/S0045-7825(99)00227-3 · Zbl 0979.76043
[2] Appelo, C.A.J., Postma, D.: Geochemistry, Groundwater and Pollution, 2nd edn. CRC, Boca Raton (2005)
[3] Ascher, U.M.: Numerical Methods for Evolutionary Differential Equations. Society for Industrial & Applied Mathematics, Philadelphia (2008) · Zbl 1157.65048
[4] Carrayrou, J., Mosé, R., Behra, P.: Operator-splitting procedures for reactive transport and comparison of mass balance errors. J. Contam. Hydrol. 68(3–4), 239–268 (2004)
[5] Carrayrou, J., Dimier, A., Kern, M., Knabner, P., Leterrier, N.: GDR MoMaS benchmark–reactive transport. http://www.gdrmomas.org/ex_qualifications.html (2006)
[6] Carrayrou, J., Kern, M., Knabner, P.: Reactive transport benchmark of MoMaS. Comput. Geosci. (2009). doi: 10.1007/s10596-009-9157-7 · Zbl 1425.76236
[7] Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact newton methods. SIAM J. Numer. Anal. 19(2), 400–408 (1982). doi: 10.1137/0719025 . http://link.aip.org/link/?SNA/19/400/1 · Zbl 0478.65030
[8] de Dieuleveult, C.: Un modèle numérique global et performant pour le couplage géochimie-transport. Thèse de doctorat, Universitè de Rennes 1 (2008)
[9] de Dieuleveult, C., Erhel, J.: A numerical model for coupling chemistry and transport. In: International Conference on SCIentific Computation And Differential Equations. SciCADE (2007) · Zbl 1425.76294
[10] de Dieuleveult, C., Erhel, J.: A global approach to reactive transport: application to the MoMaS benchmark. Comput. Geosci. (2009). doi: 10.1007/s10596-009-9163-9 · Zbl 1425.76294
[11] de Dieuleveult, C., Erhel, J., Kern, M.: A global strategy for solving reactive transport equations. J. Comput. Phys. 228(17), 6395–6410 (2009). doi: 10.1016/j.jcp.2009.05.044 · Zbl 1173.76040
[12] Eisenstat, S.C., Walker, H.F.: Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Comput. 17(1), 16–32 (1996). citeseer.ist.psu.edu/article/eisenstat94choosing.html · Zbl 0845.65021
[13] Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. VII, pp. 713–1020. North-Holland, Amsterdam (2000) · Zbl 0981.65095
[14] Fahs, M., Carrayrou, J., Younes, A., Ackerer, P.: On the efficiency of the direct substitution approach for reactive transport problems in porous media. Water Air Soil Pollut. 193, 299–208 (2008). doi: 10.1007/s11270-008-9691-2
[15] Freund, R.W., Nachtigal, N.M.: QMR: a quasi-minimal residual method for non-Hermitian linear systems. Numer. Math. 60, 315–339 (1991) · Zbl 0754.65034
[16] Frolkovič, P., Kačur, J.: Semi-analytica solution of a contaminant transport equation with nonlinear sorption in 1D. Comput. Geosci. 10(3), 279–290 (2006). doi: 10.1007/s10596-006-9023-9 · Zbl 1197.76120
[17] Hammond, G.E., Valocchi, A., Lichtner, P.: Application of Jacobian-free Newton–Krylov with physics-based preconditioning to biogeochemical transport. Adv. Water Resour. 28, 359–376 (2005)
[18] Hoffmann, J., Kräutle, S., Knabner, P.: A parallel global-implicit 2-D solver for reactive transport problems in porous media based on a reduction scheme and its application to the MoMaS benchmark problem. Comput. Geosci. (2009, this issue) · Zbl 1425.76240
[19] Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990) · Zbl 0704.15002
[20] Hoteit, H., Ackerer, P., Mosé, R.: Nuclear waste disposal simulations: couplex test cases: simulation of transport around a nuclear waste disposal site: the COUPLEX test cases (editors: Alain Bourgeat and Michel Kern). Comput. Geosci. 8, 99–124 (2004). doi: 10.1023/B:COMG.0000035074.37722.71 . http://www.ingentaconnect.com/content/klu/comg/2004/00000008/00000002/05379190 · Zbl 1060.86005
[21] Kanney, J.F., Miller, C.T., Kelley, C.T.: Convergence of iterative split operator approaches for approximating nonlinear reactive transport problems. Adv. Water Resour. 26(247–261) (2003)
[22] Kačur, J., Malengier, B., Remešikova, M.: Solution of contaminant transport with equilibrium and non-equilibrium adsorption. Comput. Methods Appl. Mech. Eng. 194, 479–489 (2005). doi: 10.1016/j.cma.2004.05.017 · Zbl 1143.76578
[23] Kelley, C.T.: Iterative methods for linear and nonlinear equations. In: Frontiers in Applied Mathematics, vol. 16. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, with separately available software (1995) · Zbl 0832.65046
[24] Knoll, D.A., Keyes, D.E.: Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193(2), 357–397 (2004). doi: 10.1016/j.jcp.2003.08.010 · Zbl 1036.65045
[25] Kräutle, S., Knabner, P.: A new numerical reduction scheme for fully coupled multicomponent transport-reaction problems in porous media. Water Resour. Res. 41(W09414) (2005). doi: 10.1029/2004WR003624
[26] Kräutle, S., Knabner, P.: A reduction scheme for coupled multicomponent transport-reaction problems in porous media: Generalization to problems with heterogeneous equilibrium reactions. Water Resour. Res. 43(W03429) (2007). doi: 10.1029/2005WR004465
[27] Lagneau, V., van der Lee, J.: HYTEC results of the MoMas reactive transport benchmark. Comput. Geosci. (2009). doi: 10.1007/s10596-009-9159-5 · Zbl 1425.76247
[28] van der Lee, J.: CHESS, another speciation and surface complexation computer code. Tech. Rep. LHM/RD/93/39, CIG École des Mines de Paris, Fontainebleau (1993)
[29] Lucille, P.L., Burnol, A., Ollar, P.: Chemtrap: a hydrogeochemical model for reactive transport in porous media. Hydrol. Process. 14, 2261–2277 (2000)
[30] Mayer, K., MacQuarrie, K.: Solution of the MoMaS reactive transport benchmark with MIN3P–model formulation and simulation results. Comput. Geosci. (2009). doi: 10.1007/s10596-009-9158-6 · Zbl 1426.76690
[31] Mazzia, A., Bergamaschi, L., Putti, M.: A time-splitting technique for the advection-dispersion equation in groundwater. J. Comput. Phys. 157(1), 181–198 (2000). doi: 10.1006/jcph.1999.6370 · Zbl 0960.76048
[32] Morel, F.M.M., Hering, J.G.: Principles and Applications of Aquatic Chemistry. Wiley, New York (1993)
[33] Parkhurst, D.L., Appelo, C.: User’s guide to PHREEQC (version 2)- a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Tech. Rep. 99-4259, USGS (1999)
[34] Rubin, J.: Transport of reacting solutes in porous media: relation between mathematical nature of problem formulation and chemical nature of reactions. Water Resour. Res. 19, 1231–1252 (1983)
[35] Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1976) · Zbl 0346.26002
[36] Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7(3), 856–869 (1986) · Zbl 0599.65018
[37] Saaltink, M., Ayora, C., Carrera, J.: A mathematical formulation for reactive transport that eliminates mineral concentrations. Water Resour. Res. 34(7), 1649–1656 (1998)
[38] Saaltink, M., Carrera, J., Ayora, C.: A comparison of two approaches for reactive transport modelling. J. Geochem. Explor. 69–70, 97–101 (2000)
[39] Saaltink, M., Carrera, J., Ayora, C.: On the behavior of approaches to simulate reactive transport. J. Contam. Hydrol. 48, 213–235 (2001)
[40] Salignac, A.L.: Transportmulti-espèces et réactions géochimiques en aquifère : développement et validation du modèle couplé HYTEC 2D. Ph.D. thesis, École des Mines de Paris (1998)
[41] Samper, J., Xu, T., Yang, C.: A sequential partly iterative approach for multicomponent reactive transport with CORE2D. Comput. Geosci. 13, 301–316 (2009). doi: 10.1007/s10596-008-9119-5 · Zbl 1338.76066
[42] Shapiro, N.Z., Shapley, L.S.: Mass action laws and the Gibbs free energy function. J. Soc. Ind. Appl. Math. 13(2), 353–375 (1965)
[43] Siegel, P., Mosé, R., Ackerer, P., Jaffré, J.: Solution of the advection-dispersion equation using a combination of discontinuous and mixed finite elements. J. Numer. Methods Fluids 24, 595–613 (1997) · Zbl 0894.76041
[44] van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13(2), 631–644 (1992) · Zbl 0761.65023
[45] Xu, T., Samper, J., Ayora, C., Manzano, M., Custodio, E.: Modeling of non-isothermal multi-component reactive transport in field scale porous media flow systems. J. Hydrol. 214, 144–164 (1999)
[46] Yeh, G.T., Tripathi, V.S.: A critical evaluation of recent developments in hydrogeochemical transport models of reactive multichemical components. Water Resour. Res. 25, 93–108 (1989)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.