×

Some quadrature formulae with nonstandard weights. (English) Zbl 1210.41008

The paper deals with the problem of computing integrals of the form
\[ \int_0^\infty f(x)w(x)\,dx, \quad \int_0^\infty f(x)K(x,y)u(x)\,dx, \]
where \(f\) is continuous. Besides, \(u(x)=x^\alpha e^{-x^\beta/2}/(1+x)^\lambda\), and \(w(x)=x^\alpha e^{-x^\beta}\), with \(\alpha>-1\), \(\beta>1/2\), \(\gamma > -1\), \( \lambda\geq 0\).
When \(f\) has exponential growth at infinity, the authors propose the use of truncated quadrature rules to evaluate these integrals. The main results are summarized in two theorems. When evaluating the first integral, an upper estimate for the quadrature error is obtained given in terms of the Sobolev norm of \(f\). Such estimate holds true when it is applied to a Gauss quadrature formula conveniently truncated. The other result deals with the stability and the convergence of a quadrature rule, which is a modification of the previous one, when it is applied to the second integral. The construction of the latter formula is more complicated than the former because of the presence of the kernel \(K\). Hence the end of the article, there is an appendix where the authors discuss the calculation of coefficients for the special case \(\lambda=0\), \(\beta=1\). Some numerical tests are shown to illustrate the performance of the proposed method.

MSC:

41A55 Approximate quadratures
65D32 Numerical quadrature and cubature formulas
41A10 Approximation by polynomials
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Mastroianni, G.; Monegato, G., Truncated quadrature rules over \((0, + \infty)\) and Nyström type methods, SIAM J. Numer. Anal., 41, 1870-1892 (2003) · Zbl 1056.65022
[2] Mastroianni, G.; Szabados, J., Polynomial approximation on the real semiaxis with generalized Laguerre weights, Studia Univ. “Babes-Bolyai” Math., LII, 4, 105-128 (2007) · Zbl 1174.41007
[3] De Bonis, M. C.; Mastroianni, G.; Viggiano, M., \(K\)-functionals, moduli of smoothness and weighted best approximation of the semiaxis, (Functions, Series, Operators (Budapest, 1999) (2002), Jnos Bolyai Math. Soc.: Jnos Bolyai Math. Soc. Budapest), 181-211 · Zbl 1041.41004
[4] Laurita, C.; Mastroianni, G., \(L^p\)-convergence of Lagrange interpolation on the semiaxis, Acta Math. Hungarica, 120, 3, 249-273 (2008) · Zbl 1164.65007
[5] Mastroianni, G.; Monegato, G., Truncated Gauss-Laguerre quadrature rules, (Trigiante, D., Recent Trends in Numerical Analysis. Recent Trends in Numerical Analysis, Adv. Theory Comput. Math., vol. 3 (2001), Nova Sci. Publ.: Nova Sci. Publ. Huntington, NY), 213-221 · Zbl 1019.65022
[6] Della Vecchia, B.; Mastroianni, G., Gaussian rules on unbounded intervals, Numerical Integration and its Complexity (Oberwolfach, 2001). Numerical Integration and its Complexity (Oberwolfach, 2001), J. Complexity, 19, 3, 247-258 (2003) · Zbl 1024.41020
[7] Mastroianni, G.; Occorsio, D., Numerical approximation of weakly singular integrals on the half line, Proceedings of the 9th International Congress on Computational and Applied Mathematics. Proceedings of the 9th International Congress on Computational and Applied Mathematics, Leuven, 2000. Proceedings of the 9th International Congress on Computational and Applied Mathematics. Proceedings of the 9th International Congress on Computational and Applied Mathematics, Leuven, 2000, J. Comput. Appl. Math., 140, 1-2, 587-598 (2002) · Zbl 1029.65025
[8] Mastroianni, G.; Occorsio, D., Markov-Sonin Gaussian rule for singular functions, J. Comput. Appl. Math., 169, 1, 197-212 (2004) · Zbl 1061.65022
[9] Cvetkovic, A. S.; Milovanovic, G. V., The mathematica package “OrthogonalPolynomials”, Facta Univ. Ser.Math. Inform., 19, 17-36 (2004) · Zbl 1081.33001
[10] Ball, J. S., Half-range generalized Hermite polynomials and the related Gaussian quadratures, SIAM J. Numer. Anal. 40, 6, 2311-2317 (2002) · Zbl 1058.41021
[11] Mastroianni, G.; Milovanovic, G. V., Some numerical methods for second kind Fredholm integral equation on the real semiaxis, IMA J. Numer. Anal. (2005)
[12] Kasuga, T.; Sakai, R., Orthonormal polynomials with generalized Freud-type weights, J. Approx. Theory, 121, 13-53 (2003) · Zbl 1034.42021
[13] Mastroianni, G.; Occorsio, D., Mean convergence of Fourier Sums on unbounded intervals, Studia Univ. “Babes-Bolyai” Mathematica, LII, 4, 89-103 (2007) · Zbl 1174.41006
[14] Mastroianni, G.; Vertesi, P., Fourier sums and Lagrange interpolation on \((0, + \infty)\) and \((- \infty, + \infty)\), (Govil, N. K.; Mhaskar, H. N.; Mohapatra, R. N.; Nashed, Z.; Szabados, J., Frontiers in Interpolation and Approximation, Dedidicated to the Memory of A. Sharma (2006), Taylor & Francis Books: Taylor & Francis Books Boca Raton, Florida), 307-344 · Zbl 1210.42004
[15] Stein, E., Singular Integrals and Differentiability Properties of Functions (1970), Princeton Univ. Press: Princeton Univ. Press Princeton, NJ · Zbl 0207.13501
[16] Mastronardi, N.; Occorsio, D., Product integration rules on the semiaxis, Proceedings of the Third FAAT. Proceedings of the Third FAAT, Suppl. Rend. Circ. Mat. Palermo (2), 52, 605-618 (1998) · Zbl 0904.65029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.