×

Collective motions in protein structures: applications of elastic network models built from electron density distributions. (English) Zbl 1197.92017

Summary: Gaussian Network Model (GNM) and Anisotropic Network Model (ANM) approaches are applied to describe the dynamics of pancreatic trypsin inhibitor protein graphs built from smoothed promolecular electron density (ED) distribution functions. A specific smoothing degree is selected, which provides a clear partitioning of the protein structure into fragments located either on the protein backbone or side chains. A first set of analyses is carried out on results obtained from ED maxima calculated at that specific smoothing level. A second set is achieved for a protein ED network whose edges are weighted by ED overlap integral values. The results are compared with those obtained through GNM, ANM, and normal mode analysis approaches, applied to the network of \(C\alpha \) atoms.

MSC:

92C40 Biochemistry, molecular biology
92C05 Biophysics
92C42 Systems biology, networks
92C30 Physiology (general)

Software:

OpenDX
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Nielsen, S. O.; Lopez, C. F.; Srinivas, G.; Klein, M. L., J. Phys. Condens. Matter, 16, R481 (2004)
[2] Bahar, I.; Atilgan, A. R.; Erman, B., Fold. Des., 2, 173 (1997)
[3] Tirion, M. M., Phys. Rev. Lett., 77, 1905 (1996)
[4] Rader, A. J.; Chennubhotla, Ch.; Yang, L.-W.; Bahar, I., (Cui, Q.; Bahar, I., Normal Mode Analysis. Theory and Applications to Biological and Chemical Systems (2006), Taylor & Francis, CRC Press: Taylor & Francis, CRC Press Boca Raton, FL), 41
[5] Dauber-Osguthorpe, P.; Osguthorpe, D. J.; Stern, P. S.; Moult, J., J. Comput. Phys., 151, 169 (1999)
[6] Doruker, P.; Atilgan, A. R.; Bahar, I., Proteins, 40, 512 (2000)
[7] Hollup, S. M.; Salensminde, G.; Reuter, N., BMC Bioinformatics, 6, 52 (2005)
[8] Hinsen, K.; Petrescu, A.-J.; Dellerue, S.; Bellisent-Funel, M.-C.; Gerald, R., Chem. Phys., 261, 25 (2000)
[9] Ming, D.; Kong, Y.; Lambert, M. A.; Huang, Z.; Ma, J., Proc. Natl. Acad. Sci., 99, 8620 (2002)
[10] Tama, F.; Wriggers, W.; Brooks, Ch. L., J. Mol. Biol., 321, 297 (2002)
[11] Tama, F.; Miyashita, O.; Brooks, Ch. L., J. Mol. Biol., 337, 985 (2004)
[12] Kundu, S.; Melton, J. S.; Sorensen, D. C.; Phillips, G. N., Biophys. J., 83, 723 (2002)
[13] Atilgan, A. R.; Akan, P.; Baysal, C., Biophys. J., 86, 85 (2004)
[14] Zhang, Z.; Shi, Y.; Liu, H., Biophys. J., 84, 3583 (2003)
[15] Kondrashov, D. A.; Cui, Q.; Phillips, G. N., Biophys. J., 91, 2760 (2006)
[16] Atilgan, A. R.; Durell, S. R.; Jernigan, R. L.; Demirel, M. C.; Keskin, O.; Bahar, I., Biophys. J., 80, 505 (2001)
[17] Song, G.; Jernigan, R. L., J. Mol. Biol., 369, 880 (2007)
[18] Amat, L.; Carbó-Dorca, R., J. Chem. Inf. Comput. Sci., 40, 1188 (2000)
[19] Kostrowicki, J.; Piela, L.; Cherayil, B. J.; Scheraga, H. A., J. Phys. Chem., 95, 4113 (1991)
[20] Leung, Y.; Zhang, J.-S.; Xu, Z.-B., IEEE T. Pattern Anal., 22, 1396 (2000)
[21] Leherte, L.; Dury, L.; Vercauteren, D. P., J. Phys. Chem. A, 107, 9875 (2003)
[22] Yang, L.-W.; Liu, X.; Jursa, Ch. J.; Holliman, M.; Rader, A. J.; Karimi, H. A.; Bahar, I., Bioinformatics, 21, 2978 (2005)
[23] Eyal, E.; Yang, L.-W.; Bahar, I., Bioinformatics, 22, 2619 (2006)
[24] Cao, Z. W.; Xue, Y.; Han, L. Y.; Xie, B.; Zhou, H.; Zheng, C. J.; Lin, H. H.; Chen, Y. Z., Nucleic Acids Res., 32, W679 (2004)
[25] Suhre, K.; Sanejouand, Y.-H., Nucleic Acids Res., 32, W610 (2004)
[26] Alexandrov, V.; Lehnert, U.; Echols, N.; Milburn, D.; Engelman, D.; Gerstein, M., Prot. Sci., 14, 633 (2005)
[27] Garzó, J. I.; Kovacs, J.; Abagyan, R.; Chacón, P., Bioinformatics, 23, 901 (2007)
[28] Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E., Nucleic Acids Res., 28, 235 (2000)
[29] Leherte, L., Acta Crystallogr. D, 60, 1254 (2004)
[30] Leherte, L.; Vercauteren, D. P., J. Comput. Chem. (2008)
[31] Brooks, B.; Karplus, M., Proc. Natl. Acad. Sci. USA, 80, 6571 (1983)
[32] MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T.K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiórkiewicz-Kuczera, J.; Yin, D.; Karplus, M., J. Phys. Chem. B, 102, 3586 (1998)
[33] Levitt, M.; Sander, Ch.; Stern, P. S., J. Mol. Biol., 181, 423 (1985)
[34] Gilbert, D. G., Phylodendron for Drawing Phylogenetic Trees, Version 0.8d (1996), Indiana Univ.: Indiana Univ. Bloomington
[35] OpenDX, The Open source Software Project Based on IBM’s Visualization Data Explorer, Visualization and Imagery Solutions, Inc. http://www.opendx.org/index2.php; OpenDX, The Open source Software Project Based on IBM’s Visualization Data Explorer, Visualization and Imagery Solutions, Inc. http://www.opendx.org/index2.php
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.