×

FMM-Yukawa: an adaptive fast multipole method for screened Coulomb interactions. (English) Zbl 1197.81019

Summary: A Fortran program package is introduced for the rapid evaluation of the screened Coulomb interactions of \(N\) particles in three dimensions. The method utilizes an adaptive oct-tree structure, and is based on the new version of fast multipole method in which the exponential expansions are used to diagonalize the multipole-to-local translations. The program and its full description, as well as several closely related packages are also available at http://www.fastmultipole.org/. This paper is a brief review of the program and its performance.

MSC:

81-04 Software, source code, etc. for problems pertaining to quantum theory

Software:

FMM-Yukawa
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Debye, P.; Hückel, E., Phys. Z., 24, 185 (1923)
[2] Gilson, M.; Rashin, A.; Fine, R.; Honig, B., J. Molec. Biol., 184, 503 (1985)
[3] Juffer, A. J.; Botta, E. F.F.; van Keulen, B. A.M.; van der Ploeg, A.; Berendsen, H. J.C., J. Comput. Phys., 97, 144 (1991)
[4] Kuo, S. S.; Altman, M. D.; Bardhan, J. P.; Tidor, B.; White, J. K., Fast methods for simulation of biomolecule electrostatics, (ICCAD ’02: Proceedings of the 2002 IEEE/ACM International Conference on Computer-Aided Design (2002), ACM: ACM New York, NY, USA), 466-473
[5] Liang, J.; Subramaniam, S., Biophys. J., 73, 1830 (1997)
[6] Lu, B.; Cheng, X.; Huang, J.; McCammon, J. A., Proc. Natl. Acad. Sci. USA, 103, 19314 (2006)
[7] (Saville, D. A.; Russell, W. B.; Schowalter, W. R., Colloidal Dispersions (1991), Cambridge University Press)
[8] Appel, A. W., SIAM J. Sci. Statist. Comput., 6, 85 (1985)
[9] Barnes, J.; Hut, P., Nature, 324, 446 (1986)
[10] Li, P.; Johnston, H.; Krasny, R., J. Comput. Phys., 228, 3858 (2009)
[11] Phillips, J. R.; White, J. K.; Member, A., IEEE Trans. Computer-Aided Design Integr. Circuits Systems, 16, 1059 (1997)
[12] Darden, T.; York, D.; Pedersen, L., J. Chem. Phys., 98, 10089 (1993)
[13] Kapur, S.; Long, D. E., IEEE Comput. Sci. Eng., 5, 60 (1998)
[14] Ong, E. T.; Lee, K. H.; Lim, K. M., Internat. J. Numer. Methods Engrg., 61, 633 (2004)
[15] Ong, E. T.; Lim, K. M.; Lee, K. H.; Lee, H. P., J. Comput. Phys., 192, 244 (2003)
[16] Greengard, L.; Rokhlin, V., J. Comput. Phys., 73, 325 (1987)
[17] Greengard, L.; Rokhlin, V., Acta Numer., 6, 229 (1997)
[18] Greengard, L. F.; Huang, J., J. Comput. Phys., 180, 642 (2002)
[19] Yarvin, N.; Rokhlin, V., SIAM J. Sci. Comput., 20, 699 (1998)
[20] Boschitsch, A. H.; Fenley, M. O.; Olson, W. K., J. Comput. Phys., 151, 212 (1999)
[21] Cheng, H.; Greengard, L.; Rokhlin, V., J. Comput. Phys., 155, 468 (1999)
[22] B. Zhang, J. Huang, N.P. Pitsianis, X. Sun, Spatio-temporal partition of the FMM interaction graph, in preparation; B. Zhang, J. Huang, N.P. Pitsianis, X. Sun, Spatio-temporal partition of the FMM interaction graph, in preparation
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.