×

Fourier analysis, linear programming, and densities of distance avoiding sets in \(\mathbb R^n\). (English) Zbl 1205.90196

Summary: We derive new upper bounds for the densities of measurable sets in \(\mathbb R^n\) which avoid a finite set of prescribed distances. The new bounds come from the solution of a linear programming problem. We apply this method to obtain new upper bounds for measurable sets which avoid the unit distance in dimensions \(2, \dots ,24\). This gives new lower bounds for the measurable chromatic number in dimensions \(3, \dots, 24\). We apply it to get a short proof of a variant of a recent result of Bukh which in turn generalizes theorems of Furstenberg, Katznelson, Weiss, Bourgain and Falconer about sets avoiding many distances.

MSC:

90C05 Linear programming
42B05 Fourier series and coefficients in several variables

Software:

lpSolve; PARI/GP
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Andrews, G. E., Askey, R., Roy, R.: Special Functions. Cambridge Univ. Press (1999) · Zbl 0920.33001
[2] Bachoc, C., Nebe, G., de Oliveira Filho, F. M., Vallentin, F.: Lower bounds for mea- surable chromatic numbers. Geom. Funct. Anal. 19, 645-661 (2009) · Zbl 1214.05022
[3] Berkelaar, M., Eikland, K., Notebaert, P.: lpsolve version 5.5. Available from the web site
[4] Bourgain, J.: A Szemerédi type theorem for sets of positive density in k R . Israel J. Math. 54, 307-316 (1986) · Zbl 0609.10043
[5] Bukh, B.: Measurable sets with excluded distances. Geom. Funct. Anal. 18, 668-697 (2008) · Zbl 1169.52005
[6] Cohn, H., Elkies, N. D.: New upper bounds on sphere packings I. Ann. of Math. 157, 689-714 (2003) · Zbl 1041.52011
[7] Croft, H. T.: Incidence incidents. Eureka (Cambridge) 30, 22-26 (1967)
[8] Croft, H. T., Falconer, K. J., Guy, R. K.: Unsolved Problems in Geometry. Springer (1991) ZBL 0748.52001 · Zbl 0748.52001
[9] Delsarte, P.: An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl. 10, vi+97 pp. (1973) · Zbl 1075.05606
[10] Falconer, K. J.: The realization of distances in measurable subsets covering n R . J. Combin. Theory Ser. A 31, 184-189 (1981) · Zbl 0469.05021
[11] Falconer, K. J.: The realization of small distances in plane sets of positive measure. Bull. London Math. Soc. 18, 475-477 (1986) · Zbl 0599.28009
[12] Falconer, K. J., Marstrand, J. M.: Plane sets with positive density at infinity contain all large distances. Bull. London Math. Soc. 18, 471-474 (1986) · Zbl 0599.28008
[13] Furstenberg, H., Katznelson, Y., Weiss, B.: Ergodic theory and configurations in sets of pos- itive density. In: Mathematics of Ramsey Theory, J. Ne\check set\check ril and V. Rödl (eds.), Springer, 184-198 (1990) · Zbl 0738.28013
[14] Katznelson, Y.: An Introduction to Harmonic Analysis. Dover Publ. (1976) · Zbl 0352.43001
[15] Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. Cambridge Univ. Press (1995) · Zbl 0819.28004
[16] PARI-group: PARI/GP version 2.3.3. Bordeaux (2006); · Zbl 0019.41503
[17] Székely, L. A.: Measurable chromatic number of geometric graphs and sets without some dis- tances in Euclidean space. Combinatorica 4, 213-218 (1984) · Zbl 0558.05020
[18] Székely, L. A.: Erd\Acute\Acute os on unit distances and the Szemerédi-Trotter theorems. In: Paul Erd\Acute\Acute os and his Mathematics, G. Halász et al. (eds.), Springer, 649-666 (2002) · Zbl 1035.05037
[19] Székely, L. A., Wormald, N. C.: Bounds on the measurable chromatic number of n R . Discrete Math. 75, 343-372 (1989) · Zbl 0683.05021
[20] Watson, G. N.: A Treatise on the Theory of Bessel Functions. Cambridge Univ. Press (1995) · Zbl 0849.33001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.