×

Unified multi-domain modelling and simulation of space robot for capturing a moving target. (English) Zbl 1376.70023

Summary: Space robotic systems are expected to play an increasingly important role in the future on-orbit service. The applications include repairing, refueling or de-orbiting of a satellite, or removal of the space debris. The dynamical performances of space robotic system result from the multi-physics interactions between mechanical, electrical, electronic, control, etc. In this paper, we developed a unified multi-domain modelling and simulation system. The system is composed of the following modules: the path planner, joint controllers, motor and its driver, gearing mechanism of the space manipulators, the Guidance, Navigation, and Control (GNC) system, the actuators of the base, and the orbital environment, orbital dynamic and the multi-body dynamic of the whole system, etc. Based on this system, the operation during different stages, including far range rendezvous, close range rendezvous (is usually divided into two sub-phases: closing and final approach) and target capturing can be studied from the view of multi-physics domains. The key algorithms, such as pose (position and attitude) measurement, GNC of the base, path planning and control of the space manipulator, and so on, can be validated using the system. As examples, the capturing processes of a moving target under free-floating and attitude-controlled modes are simulated and the simulation results are given.

MSC:

70E60 Robot dynamics and control of rigid bodies
70Q05 Control of mechanical systems
93A30 Mathematical modelling of systems (MSC2010)
93C85 Automated systems (robots, etc.) in control theory

Software:

Dymola; Modelica
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hirzinger, G., Landzettel, K., Brunner, B., et al.: DLR’s robotics technologies for on-orbit servicing. Adv. Robotics 18(2), 139–174 (2004) · Zbl 05390023 · doi:10.1163/156855304322758006
[2] Yoshida, K.: Engineering test satellite VII flight experiments for space robot dynamics and control: theories on laboratory test beds ten years ago, now in orbit. Int. J. Robotics Res. 22(5), 321–335 (2003) · Zbl 05422665 · doi:10.1177/0278364903022005003
[3] Liang, B., Li, C., Xue, L.J., et al.: A Chinese small intelligent space robotic system for on-orbit servicing. In: Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, pp. 4603–4607 (2006)
[4] Abramovici, A.: The special purpose dexterous manipulator (SPDM) systems engineering effort. J. Reducing Space Mission Cost 1, 177–200 (1998) · doi:10.1023/A:1009918213987
[5] Wilson, J.R.: Satellite hopes ride on orbital express. Aerosp. Am. 45(2), 30–35 (2007)
[6] Stoll, E., Walter, U., Artigas, J., et al.: Ground verification of the feasibility of telepresent on-orbit servicing. J. Field Robotics 26(3), 287–307 (2009) · doi:10.1002/rob.20286
[7] Rekleitis, I., Martin, E., Rouleau, G., et al.: Autonomous capture of a tumbling satellite. Special issue on space robotics. J. Field Robotics 24(4), 275–296 (2007) · doi:10.1002/rob.20194
[8] Umetani, Y., Yoshida, K.: Resolved motion rate control of space manipulators with generalized Jacobian matrix. IEEE Trans. Robotics Autom. 5(3), 303–314 (1989) · doi:10.1109/70.34766
[9] Umetani, Y., Yoshida, K.: Workspace and manipulability analysis of space manipulator. Trans. Soc. Instrum. Control Eng. E-1(1), 116–123 (2001)
[10] Agrawal, S.K., Chen, M.Y., Annapragada, M., et al.: Modelling and simulation of assembly in a free-floating work environment by a free-floating robot. Trans. ASME J. Mech. Des. 118(1), 115–120 (1996) · doi:10.1115/1.2826841
[11] Papadopoulous, E., Evangelos, S., Moosavian, A., et al.: Dynamics and control of multi-arm space robots during chase and capture operations. In: Proc. IEEE International Conference on Intelligent Robots and Systems, pp. 1554–1561 (1994)
[12] Nagamatsu, H., Kubota, T., Nakatani, I., et al.: Autonomous retrieval of a tumbling satellite based on predictive trajectory. In: Proc. International Conference on Robotics and Automation, Albuquerque, New Mexico, pp. 3074–3079 (1997)
[13] McCourt, R.A., de Silva, C.W.: Autonomous robotic capture of a satellite using constrained predictive control. IEEE/ASME Trans. Mechatronics 11(6), 699–708 (2006) · doi:10.1109/TMECH.2006.886246
[14] Xu, W.F., Liu, Y., Liang, B., et al.: Autonomous path planning and experiment study of free-floating space robot for target capturing. J. Intell. Robotic Syst. 51(3), 303–331 (2008) · Zbl 05537128 · doi:10.1007/s10846-007-9192-3
[15] Xu, W.F., Liang, B., Li, C., et al.: Autonomous target capturing of free-floating space robot: theory and experiments. Robotica 27, 425–445 (2008) · doi:10.1017/S0263574708004839
[16] Xu, W.F., Liang, B., Xu, Y.S., et al.: A ground experiment system of free-floating space robot for capturing space target. J. Intell. Robotic Syst. 48(2), 187–208 (2007) · Zbl 05193623 · doi:10.1007/s10846-006-9087-8
[17] Li, Y., Lin, Z., Wang, H., et al.: An automated modelling approach for dynamic performance evaluation of mechatronic multibody systems. Math. Comput. Model. Dyn. Syst. 13(6), 545–572 (2007) · Zbl 1154.93309
[18] Lovera, M.: Control-oriented modelling and simulation of spacecraft attitude and orbit dynamics. Math. Comput. Model. Dyn. Syst. 12(1), 73–88 (2006) · Zbl 1147.93374
[19] Mcphee, J., Shi, P., Piedbuf, J.: Dynamics of multibody systems using virtual work and symbolic programming. Math. Comput. Model. Dyn. Syst. 8(2), 137–155 (2002) · Zbl 1033.70001
[20] Samin, J.C., Brüls, O., Collard, J.F., et al.: Multiphysics modelling and optimization of mechatronic multibody systems. Multibody Syst. Dyn. (18), 345–373 (2007) · Zbl 1178.70075
[21] Schiehlen, W.: Research trends in multibody system dynamics. Multibody Syst. Dyn. 18, 3–13 (2007) · Zbl 1118.70007 · doi:10.1007/s11044-007-9064-4
[22] Fritzson, P., Bunus, P.: Modelica–a general object-oriented language for continuous and discrete-event system modelling and simulation. In: Proc. the 35th Annual Simulation Symposium, San Diego, California, USA, pp. 365–380 (2002)
[23] Dempsey, M.: Dymola for multi-engineering modelling and simulation. In: Proc. IEEE Vehicle Power and Propulsion Conference, Windsor, United Kingdom, pp. 1–6 (2006)
[24] Fehse, W.: Automated Rendezvous and Docking of Spacecraft. Cambridge University Press, Cambridge (2003)
[25] Ellery, A., Kreisel, J., Sommer, B., et al.: The case for robotic on-orbit servicing of spacecraft: spacecraft reliability is a myth. Acta Astronaut. 63, 632–648 (2008) · doi:10.1016/j.actaastro.2008.01.042
[26] Settlemeyer, E., Lehrl, E., Oesterlin, W., et al.: Experimental servicing satellite–ESS. Technical Report TR 98-c-14 (1998)
[27] Åström, K.J., Elmqvist, H., Mattsson, S.E., et al.: Evolution of continuous-time modelling and simulation. In: Proc. The 12th European Simulation Multiconference, Manchester, UK, pp. 1–10 (1998)
[28] Schiavo, F., Viganò, L., Ferretti, G., et al.: Object-oriented modelling of flexible beams. Multibody Syst. Dyn. (15), 263–286 (2006) · Zbl 1099.74065
[29] Oda, M.: Motion control of the satellite mounted robot arm which assures satellite attitude stability. Acta Astronaut. 41(11), 739–750 (1997) · doi:10.1016/S0094-5765(97)00214-2
[30] Papadopoulos, E., Dubowsky, S.: Dynamic singularities in the control of free-floating space manipulators. ASME J. Dyn. Syst. Meas. Control 115(1), 44–52 (1993) · doi:10.1115/1.2897406
[31] Franke, J., Otter, M.: The Manutec r3 benchmark models for dynamic simulation of robots. DLR FF-DR-ER, Technical Report TR T101-93 (1993)
[32] Sidi, M.: Spacecraft Dynamics and Control. Cambridge University Press, Cambridge (1997) · Zbl 0883.40001
[33] Chobotov, V.A.: Spacecraft attitude dynamics and control (1991)
[34] Maus, S., Macmillan, S., Lowes, F., et al.: Evaluation of Krieger candidate geomagnetic field models for the 10th generation of IGRF. Earth Planets Space 57, 1173–1181 (2005)
[35] Montenbruck, O., Gill, E.: Satellite Orbits: Models, Methods, Applications. Springer, Berlin (2000) · Zbl 0949.70001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.