×

Calculation of radial prolate spheroidal wave functions of the second kind. (English) Zbl 1206.65124

Summary: Spheroidal wave functions are important for boundary-value calculations in electromagnetics, acoustics and quantum mechanics. This paper discusses the calculation of radial prolate spheroidal wave functions of the second kind for integral mode numbers and real spheroidal parameter. The calculation of these functions is difficult. The existing methods are variously limited by numerical cancellation, slow convergence, algebraic complexity and restricted scope. The paper proposes a hybrid scheme. It uses an analytical solution to give the initial conditions for a numerical solution of the defining differential equation using the Bulirsch-Stoer method. Multiple-precision arithmetic is used to overcome the problem of numerical cancellation. The Wronskian is used to assess the accuracy of the solution. The results are highly accurate. The scheme should provide a practical approach for many applications. Reference results are presented for validation purposes.

MSC:

65D20 Computation of special functions and constants, construction of tables
33E10 Lamé, Mathieu, and spheroidal wave functions

Software:

Algorithm 693
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Flammer, C., Spheroidal Wave Functions (1957), Stanford University Press · Zbl 0078.05703
[2] Meixner, J.; Schäfke, F. W., Mathieusche Funktionen und Sphäroid-Funktionen (1954), Springer-Verlag: Springer-Verlag Berlin · Zbl 0058.29503
[3] Stratton, J. A.; Morse, P. M.; Chu, L. J.; Little, J. D.C.; Corbató, F. J., Spheroidal Wave Functions (1956), Wiley: Wiley New York · Zbl 0070.35903
[4] Li, L.-W.; Kang, X.-K.; Leong, M.-S., Spheroidal Wave Functions in Electromagnetic Theory (2002), Wiley: Wiley New York
[5] Levitina, T. V.; Brändas, E. J., J. Comput. Methods Sci. Eng., 1, 287 (2001)
[6] Kirby, P., Comput. Phys. Comm., 175, 465 (2006)
[7] Li, L.-W.; Leong, M.-S.; Yeo, T.-S.; Kooi, P.-S.; Tan, K.-Y., Phys. Rev. E, 71, 69901 (2005), Erratum
[8] Zhang, S. J.; Jin, J. M., Computation of Special Functions (1996), Wiley: Wiley New York
[9] Barrowes, B. E.; O’Neill, K.; Grzegorczyk, T. M.; Kong, J. A., Stud. Appl. Math., 113, 271 (2004)
[10] Abramov, A. A.; Dyshko, A. L.; Konyukhova, N. B.; Levitina, T. V., Comput. Maths Math. Phys., 31, 25 (1991)
[11] Abramov, A. A.; Dyshko, A. L.; Konyukhova, N. B.; Pak, T. V.; Pariiskii, B. S., Comput. Maths Math. Phys., 24, 1 (1984)
[12] Voshchinnikov, N. V.; Farafonov, V. G., Comput. Maths Math. Phys., 43, 1299 (2003)
[13] Bulirsch, R.; Stoer, J., Numer. Math., 8, 1 (1966)
[14] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions (1972), Dover Publications Inc.: Dover Publications Inc. New York · Zbl 0515.33001
[15] Ince, E. L., Ordinary Differential Equations (1956), Dover Publications Inc.: Dover Publications Inc. New York, p. 119 · Zbl 0063.02971
[16] Bailey, D. H., Comput. Sci. Engrg., 7, 54 (2005)
[17] Butcher, J. C., J. ACM, 14, 84 (1967)
[18] Smith, D. M., ACM Trans. Math. Software, 17, 273 (1991)
[19] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes in Fortran (1992), Cambridge University Press, p. 718 · Zbl 0778.65002
[20] Beu, T. A.; Câmpeanu, R. I., Comput. Phys. Comm., 30, 177 (1983)
[21] Do-Nhat, T.; MacPhie, R. H., Can. J. Phys., 75, 671 (1997)
[22] Falloon, P. E.; Abbott, P. C.; Wang, J. B., J. Phys. A: Math. Gen., 36, 5477 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.