×

A PLIC-VOF method suited for adaptive moving grids. (English) Zbl 1283.76054

Summary: This paper presents a new variant of the volume-of-fluid (VOF) color function \(C\) advection algorithm based on the piecewise linear interface construction (PLIC) method suitable for use on general moving grids. From several existing methods for reconstructing the linear interface we adopted the least squares volume-of-fluid interface reconstruction algorithm (LVIRA) which can be easily implemented on general grids. The distinguishing step in the advection algorithm that takes into account the grid movement is the construction of the donating region containing the fluid passing through corresponding cell-faces in a single time-step. The donating regions are constructed utilizing fluid velocity in cell corners relative to grid (corner) velocities. The method is conservative as it complies with the space conservation law (SCL) and requires a proper definition of the grid velocities and fluxes due to the grid movement. The accuracy of the presented advection algorithm is assessed with standard test cases. It is comparable with other PLIC based algorithms on fixed grids, while the applicability on adaptive moving grids enables a considerable reduction in the number of grid cells.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
65M50 Mesh generation, refinement, and adaptive methods for the numerical solution of initial value and initial-boundary value problems involving PDEs

Software:

VOFTools; SLIC
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hirt, C.; Nichols, B., Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201-225 (1981) · Zbl 0462.76020
[2] Demirdžić, I.; Perić, M., Space conservation law in finite volume calculations of fluid flow, Int. J. Numer. Meth. Fluids, 8, 1037-1050 (1988) · Zbl 0647.76018
[3] Darwish, M.; Moukalled, F., Convective schemes for capturing interfaces of free-surface flows on unstructured grids, Numer. Heat Transfer B, 49, 19-42 (2006)
[4] Dendy, E. D.; Padial-Collins, N. T., V.W.B. General-purpose finite-volume advection scheme for continuous and discontinuous fields on unstructured grids, J. Comput. Phys., 180, 559-583 (2002) · Zbl 1143.76499
[5] Rudman, M., Volume-tracking methods for interfacial flow calculations, Int. J. Numer. Meth. Fluids, 24, 671-691 (1997) · Zbl 0889.76069
[6] Ubbink, O.; Issa, R. I., A method for capturing sharp fluid interfaces on arbitrary meshes, J. Comput. Phys., 153, 26-50 (1999) · Zbl 0955.76058
[7] Leonard, B. P., A stable and accurate convective modelling procedure based on quadratic upstream calculation, Comput. Meth. Appl. Mech. Eng., 19, 59-98 (1979) · Zbl 0423.76070
[8] Leonard, B. P., The ULTIMATE conservative difference scheme applied to unsteady one-dimensional convection, Comput. Meth. Appl. Mech. Eng., 88, 17-74 (1991) · Zbl 0746.76067
[9] Rider, W. J.; Kothe, D. B., Reconstructing volume tracking, J. Comput. Phys., 141, 112-152 (1998) · Zbl 0933.76069
[10] Harvie, D. J.E.; Fletcher, D. F., A new volume of fluid advection algorithm: the defined donating refion scheme, Int. J. Numer. Meth. Fluids, 35, 151-172 (2001) · Zbl 0991.76062
[11] López, J.; Hernández, J.; Gómez, P.; Faura, F., A volume of fluid method based on multidimensional advection and spline interface reconstruction, J. Comput. Phys., 195, 718-742 (2004) · Zbl 1115.76358
[12] Liovic, P.; Lakehal, D., A Newton-Krylov solver for remapping-based volume-of-fluid methods, SIAM J. Sci. Comput., 31, 865-889 (2008) · Zbl 1198.35018
[13] Cervone, A.; Manservisi, S.; Scardovelli, R.; Zaleski, S., A geometrical predictor-corrector advection scheme and its application to the volume fraction function, J. Comput. Phys., 228, 406-419 (2009) · Zbl 1158.76027
[14] Harvie, D. J.E.; Fletcher, D. F., A new volume of fluid advection algorithm: the stream scheme, J. Comput. Phys., 162, 1-32 (2000) · Zbl 0964.76068
[15] Noh, W. F.; Woodward, P. R., SLIC (simple line interface calculation), Lect. Notes Phys., 59, 330-340 (1976) · Zbl 0382.76084
[16] Pilliod, J. E.; Puckett, E. G., Second-order accurate volume-of-fluid algorithms for tracking material interfaces, J. Comput. Phys., 199, 465-502 (2004) · Zbl 1126.76347
[17] Aulisa, E.; Manservisi, S.; Scardovelli, R., A mixed markers and volume-of-fluid method for the reconstruction and advection of interfaces in two-phase and free-boundary flows, J. Comput. Phys., 188, 611-639 (2003) · Zbl 1127.76346
[18] Zhang, Q.; Liu, P. L.-F., A new interface tracking method: the polygonal area mapping method, J. Comput. Phys., 227, 4063-4088 (2008) · Zbl 1135.76041
[19] Aulisa, E.; Manservisi, S.; Scardovelli, R., A surface marker algorithm coupled to an area-preserving marker redistribution method for three-dimensional interface tracking, J. Comput. Phys., 197, 555-584 (2004) · Zbl 1079.76605
[20] Scardovelli, R.; Zaleski, S., Interface reconstruction with least-square fit and split Eulerian-Lagrangian advection, Int. J. Numer. Meth. Fluids, 41, 251-274 (2003) · Zbl 1047.76080
[21] Gois, J. P.; Nakano, A.; Nonato, L. G.; Buscaglia, G. C., Front tracking with moving-least-squares surfaces, J. Comput. Phys., 227, 9643-9669 (2008) · Zbl 1153.65017
[22] Renardy, Y.; Renardy, M.; Cristini, V., A new volume-of-fluid formulation for surfactants and simulations of drop deformation under shear at a low viscosity ratio, Eur. J. Mech. B/Fluids, 21, 49-59 (2002) · Zbl 1063.76077
[23] López, J.; Hernández, J., Analytical and geometrical tools for 3D volume of fluid methods in general grids, J. Comput. Phys., 227, 5939-5948 (2008) · Zbl 1142.76042
[24] Liovic, P.; Rudman, M.; Liow, J. L.; Lakehal, D.; Kothe, D., A 3D unsplit-advection volume tracking algorithm with planarity-preserving interface reconstruction, Comput. Fluids, 35, 1011-1032 (2006) · Zbl 1177.76292
[25] Greaves, D., A quadtree adaptive method for simulating fluid flows with moving interfaces, J. Comput. Phys., 194, 35-56 (2004) · Zbl 1136.76408
[26] Greaves, D., Simulation of interface and free surface flows in a viscous fluid using adapting quadtree grids, Int. J. Numer. Meth. Fluids, 44, 1093-1117 (2004) · Zbl 1085.76549
[27] Theodorakakos, A.; Bergeles, G., Simulation of sharp gas liquid interface using VOF method and adaptive grid local refinement around the interface, Int. J. Numer. Meth. Fluids, 45, 421-439 (2004) · Zbl 1085.76551
[28] Weymouth, G.; Yue, D. K.-P., Conservative volume-of-fluid method for free-surface simulations on Cartesian-grids, J. Comput. Phys., 229, 2853-2865 (2010) · Zbl 1307.76064
[29] Patankar, S. V., Numerical Heat Transfer and Fluid Flow (1980), Hemisphere Publishing Corporation · Zbl 0595.76001
[30] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes in Fortran 77: the Art of Scientific Computing (1992), Cambridge University Press · Zbl 0778.65002
[31] Mencinger, J., Numerical simulation of melting in two-dimensional cavity using adaptive grid, J. Comput. Phys., 198, 243-264 (2004) · Zbl 1057.76040
[32] Anderson, D. A., Grid cell volume control with an adaptive grid generator, Appl. Math. Comput., 35, 209-217 (1990) · Zbl 0721.65068
[33] Roy, C. J., Review of code and solution verification procedures for computational simulation, J. Comput. Phys., 205, 131-156 (2005) · Zbl 1072.65118
[34] Zalesak, S. T., Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 31, 335-362 (1979) · Zbl 0416.76002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.