×

A three-compartment model of the C-peptide-insulin dynamic during the DIST test. (English) Zbl 1204.92040

Summary: Dynamic insulin sensitivity (SI) tests often utilise model-based parameter estimation. This research analyses the impact of expanding the typically used two-compartment model of insulin and C-peptide kinetics to incorporate a hepatic third compartment. The proposed model requires only four C-peptide assays to simulate endogenous insulin production (uen), greatly reducing the cost and clinical burden. Sixteen subjects participated in 46 dynamic insulin sensitivity tests (DIST). Population kinetic parameters are identified for the new compartment. Results are assessed by model error versus measured data and repeatability of the identified SI. The median C-peptide error was 0% (IQR: - 7.3, 6.7)%. Median insulin error was 7% (IQR: - 28.7, 6.3)%. Strong correlation \((r = 0.92)\) existed between the SI values of the new model and those from the original two-compartment model. Repeatability in SI was similar between models (new model inter/intra-dose variability 3.6/12.3% original model - 8.5/11.3%). When frequent C-peptide samples may be available, the added hepatic compartment does not offer significant diagnostic, repeatability improvement over the two-compartment model. However, a novel and successful three-compartment modelling strategy was developed which provided accurate estimation of endogenous insulin production and the subsequent SI identification from sparse C-peptide data.

MSC:

92C50 Medical applications (general)
93A30 Mathematical modelling of systems (MSC2010)

Software:

DAISY
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Carson, E. R.; Cobelli, C., Modelling Methodology for Physiology and Medicine (2001), Academic Press: Academic Press San Diego
[2] Bergman, R. N.; Prager, R.; Volund, A.; Olefsky, J. M., Equivalence of the insulin sensitivity index in man derived by the minimal model method and the euglycemic glucose clamp, J. Clin. Invest., 79, 790 (1987)
[3] Denti, P.; Bertoldo, A.; Vicini, P.; Cobelli, C., Nonlinear mixed effects to improve glucose minimal model parameter estimation: a simulation study in intensive and sparse sampling, IEEE Trans. Biomed. Eng., 56, 2156 (2009)
[4] Erichsen, L.; Agbaje, O. F.; Luzio, S. D.; Owens, D. R.; Hovorka, R., Population and individual minimal modeling of the frequently sampled insulin-modified intravenous glucose tolerance test, Metabolism, 53, 1349 (2004)
[5] Van Cauter, E.; Mestrez, F.; Sturis, J.; Polonsky, K. S., Estimation of insulin secretion rates from c-peptide levels. Comparison of individual and standard kinetic parameters for c-peptide clearance, Diabetes, 41, 368 (1992)
[6] Volund, A.; Polonsky, K. S.; Bergman, R. N., Calculated pattern of intraportal insulin appearance without independent assessment of c-peptide kinetics, Diabetes, 36, 1195 (1987)
[7] Bergman, R. N.; Ider, Y. Z.; Bowden, C. R.; Cobelli, C., Quantitative estimation of insulin sensitivity, Am. J. Physiol., 236, E667 (1979)
[8] Quon, M. J.; Cochran, C.; Taylor, S. I.; Eastman, R. C., Non-insulin-mediated glucose disappearance in subjects with iddm. Discordance between experimental results and minimal model analysis, Diabetes, 43, 890 (1994)
[9] Caumo, A.; Cobelli, C., Hepatic glucose production during the labeled ivgtt: Estimation by deconvolution with a new minimal model, Am. J. Physiol., 264, E829 (1993)
[10] Caumo, A.; Vicini, P.; Zachwieja, J. J.; Avogaro, A.; Yarasheski, K.; Bier, D. M.; Conelli, C., Undermodeling affects minimal model indexes: insights from a two-compartment model, Am. J. Physiol., 276, E1171 (1999)
[11] Pillonetto, G.; Sparacino, G.; Cobelli, C., Numerical non-identifiability regions of the minimal model of glucose kinetics: superiority of Bayesian estimation, Math. Biosci., 184, 53 (2003) · Zbl 1016.62126
[12] Frost, D. P.; Srivastava, M. C.; Jones, R. H.; Nabarro, J. D.; Sonsken, P. H., The kinetics of insulin metabolism in diabetes mellitus, Postgrad. Med. J., 49, Suppl. 7, 949 (1973)
[13] Tranberg, K. G.; Dencker, H., Modeling of plasma disappearance of unlabeled insulin in man, Am. J. Physiol., 235, E577 (1978)
[14] Polonsky, K. S.; Given, B. D.; Pugh, W.; Lincino-Paixao, J.; Thompson, J. E.; Karrison, T.; Rubenstein, A. H., Calculation of the systemic delivery rate of insulin in normal man, J. Clin. Endocrinol. Metab., 63, 113 (1986)
[15] Lotz, T.; Chase, J. G.; McAuley, K. A.; Shaw, G. M.; Wong, J.; Lin, J.; Le Compte, A. J.; Hann, C. E.; Mann, J. I., Monte carlo analysis of a new model-based method for insulin sensitivity testing, Comput. Methods Progr. Biomed., 89, 215 (2008)
[16] Sherwin, R. S.; Kramer, K. J.; Tobin, J. D.; Insel, P. A.; Liljenquist, J. E.; Berman, M.; Andres, R., A model of the kinetics of insulin in man, J. Clin. Invest., 53, 1481 (1974)
[17] Guyton, A. C.; Hall, J. E., The liver as an organ, Textbook of Medical Physiology (1996), W.B. Saunders Company, pp. 883-888
[18] Ekataksin, W.; Kaneda, K., Liver microvascular architecture: an insight into the pathophysiology of portal hypertension, Semin. Liver Dis., 19, 359 (1999)
[19] T. Lotz, High Resolution Clinical Model-based Assessment of Insulin Sensitivity, Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 2007, <http://hdl.handle.net/10092/1571>; T. Lotz, High Resolution Clinical Model-based Assessment of Insulin Sensitivity, Ph.D. Thesis, University of Canterbury, Christchurch, New Zealand, 2007, <http://hdl.handle.net/10092/1571>
[20] Natali, A.; Gastaldelli, A.; Camastra, S.; Sironi, A. M.; Toschi, E.; Masoni, A.; Ferrannini, E.; Mari, A., Dose-response characteristics of insulin action on glucose metabolism: a non-steady-state approach, Am. J. Physiol. Endocrinol. Metab., 278, E794 (2000)
[21] Kolterman, O. G.; Insel, I.; Saekow, M., Mechanisms of insulin resistance in human obesity: evidence for receptor and postreceptor defects, J. Clin. Invest., 65, 1272 (1980)
[22] Meier, J. J.; Veldhuis, J. D.; Butler, P. C., Pulsatile insulin secretion dictates systemic insulin delivery by regulating hepatic insulin extraction in humans, Diabetes, 54, 1649 (2005)
[23] Thorsteinsson, B., Kinetic models for insulin disappearance from plasma in man, Dan. Med. Bull., 37, 143 (1990)
[24] Samnegard, B.; Brundin, T., Renal extraction of insulin and c-peptide in man before and after a glucose meal, Clin. Physiol., 21, 164 (2001)
[25] Toffolo, G.; De Grandi, F.; Cobelli, C., Estimation of beta-cell sensitivity from intravenous glucose tolerance test c-peptide data. Knowledge of the kinetics avoids errors in modeling the secretion, Diabetes, 44, 845 (1995)
[26] Ferrannini, E.; Mari, A., How to measure insulin sensitivity, J. Hypertens., 16, 895 (1998)
[27] Steil, G. M.; Rebrin, K.; Mittelman, S. D.; Bergman, R., Role of portal insulin delivery in the dissappearance of intravenous glucose and assessment of insulin sensitivity, Diabetes, 47, 714 (1998)
[28] Barrett, E. J.; Eggleston, E. M.; Inyard, A. C.; Wang, H.; Li, G.; Chai, W.; Liu, Z., The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action, Diabetologia, 52, 752 (2009)
[29] Steil, G. M.; Ader, M.; Moore, D. M.; Rebrin, K.; Bergman, R. N., Transendothelial insulin transport is not saturable in vivo. No evidence for a receptor-mediated process, J. Clin. Invest., 97, 1497 (1996)
[30] Yang, Y. J.; Hope, I. D.; Ader, M.; Bergman, R. N., Insulin transport across capillaries is rate limiting for insulin action in dogs, J. Clin. Invest., 84, 1620 (1989)
[31] Toffolo, G.; Campioni, M.; Basu, R.; Rizza, R. A.; Cobelli, C., A minimal model of insulin secretion and kinetics to assess hepatic insulin extraction, Am. J. Physiol. Endocrinol. Metab., 290, E169 (2006)
[32] Kim, C.; Kim, S. B., Modelling contaminant transport in a three-phase groundwater system with the freundlich-type retardation factor, Environ. Technol., 28, 205 (2007)
[33] Youssef, I. K.; El-Arabawy, H. A., Picard iteration algorithm combined with Gauss-Seidel technique for initial value problems, Appl. Math. Comput., 190, 345 (2007) · Zbl 1122.65369
[34] Hann, C. E.; Chase, J. G.; Lin, J.; Lotz, T.; Doran, C. V.; Shaw, G. M., Integral-based parameter identification for long-term dynamic verification of a glucose-insulin system model, Comput. Methods Progr. Biomed., 77, 259 (2005)
[35] Docherty, P. D.; Chase, J. G.; Lotz, T.; Hann, C. E.; Shaw, G. M.; Berkeley, J. E.; Mann, J. I.; McAuley, K. A., Distq: an iterative analysis of glucose data for low-cost real-time and accurate estimation of insulin sensitivity, Open Med. Inform. J., 3, 65 (2009)
[36] Bellu, G.; Saccomani, M. P.; Audoly, S.; D’Angio, L., Daisy: a new software tool to test global identifiability of biological and physiological systems, Comput. Methods Progr. Biomed., 88, 52 (2007)
[37] Audoly, S.; Bellu, G.; D’Angio, L.; Saccomani, M. P.; Cobelli, C., Global identifiability of nonlinear models of biological systems, IEEE Trans. Biomed. Eng., 48, 55 (2001)
[38] Eaton, R. P.; Allen, R. C.; Schade, D. S.; Erickson, K. M.; Standefer, J., Prehepatic insulin production in man: kinetic analysis using peripheral connecting peptide behavior, J. Clin. Endocrinol. Metab., 51, 520 (1980)
[39] Mari, A., Assessment of insulin sensitivity and secretion with the labelled intravenous glucose tolerance test: improved modelling analysis, Diabetologia, 41, 1029 (1998)
[40] Yzet, T.; Bouzerar, R.; Baledent, O.; Renard, C.; Lumbala, D. M.; Nguyen-Khac, E.; Regimbeasu, J. M.; Meyer, M. E.; Deramond, D., Dynamic measurements of total hepatic blood flow with phase contrast mri, Eur. J. Radiol. (2008), (epub ahead of print)
[41] Keiding, S., Galactose clearance measurements and liver blood flow, Gastroenterology, 94, 477 (1988)
[42] Umemoto, Y.; Nishi, S.; Shindoh, M.; Asada, A., Venous blood flow measurement by determination of change in venous hemoglobin saturation, Crit. Care Med., 28, 3181 (2000)
[43] Mari, A.; Tura, A.; Pacini, G.; Kautzky-Willer, A.; Ferrannini, E., Relationships between insulin secretion after intravenous and oral glucose administration in subjects with glucose tolerance ranging from normal to overt diabetes, Diabetes Med., 25, 671 (2008)
[44] Cobelli, C.; Pacini, G., Insulin secretion and hepatic extraction in humans by minimal modeling of c-peptide and insulin kinetics, Diabetes, 37, 223 (1988)
[45] Cobelli, C.; Toffolo, G.; Dalla Man, C.; Campioni, M.; Denti, P.; Caumo, A.; Butler, P.; Rizza, R., Assessment of beta-cell function in human, simultanously with insulin sensitivity and hepatic extraction, from intravenous and oral glucose tests, Am. J. Physiol. Endocrinol. Metab., 293, E1 (2007)
[46] DeFronzo, R. A.; Ferrannini, E., Insulin resistance. A multifaceted syndrome responsible for niddm, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease, Diabetes Care, 14, 173 (1991)
[47] Ferrannini, E., Insulin resistance is central to the burden of diabetes, Diabetes Metab. Rev., 13, 81 (1997)
[48] Martin, B. C.; Warram, J. H.; Krolewski, A. S.; Bergman, R.; Soeldner, J. S.; Kahn, C. R., Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study, Lancet, 340, 925 (1992)
[49] Ferrannini, E.; Mari, A., Beta cell function and its relation to insulin action in humans: a critical appraisal, Diabetologia, 47, 943 (2004)
[50] Pacini, G.; Mari, A., Methods for clinical assessment of insulin sensitivity and beta-cell function, Best Pract. Res. Clin. Endocrinol. Metab., 17, 305 (2003)
[51] Meier, J. J.; Holst, J. J.; Schmidt, W. E.; Nauck, M. A., Reduction of hepatic insulin clearance after oral glucose ingestion is not mediated by glucagon-like peptide 1 or gastric inhibitory polypeptide in humans, Am. J. Physiol. Endocrinol. Metab., 293, E849 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.