×

Estimators for the long-memory parameter in LARCH models, and fractional Brownian motion. (English) Zbl 1205.91175

Summary: This paper investigates several strategies for consistently estimating the so-called Hurst parameter \(H\) responsible for the long-memory correlations in a linear class of ARCH time series, known as LARCH(\(\infty\)) models, as well as in the continuous-time Gaussian stochastic process known as fractional Brownian motion (fBm). A LARCH model’s parameter is estimated using a conditional maximum likelihood method, which is proved to have good stability properties. A local Whittle estimator is also discussed. The article further proposes a specially designed conditional maximum likelihood method for estimating the \(H\) which is closer in spirit to one based on discrete observations of fBm. In keeping with the popular financial interpretation of ARCH models, all estimators are based only on observation of the “returns” of the model, not on their “volatilities”.

MSC:

91G70 Statistical methods; risk measures
60G22 Fractional processes, including fractional Brownian motion
62M09 Non-Markovian processes: estimation
60G18 Self-similar stochastic processes
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
91B84 Economic time series analysis

Software:

itsmr
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abadir KM, Distaso W, Giraitis L (2005) Semiparametric estimation and inference for trending I(d) and related processes. Ann Stat 2006 (to appear)
[2] Abadir KM, Distaso W, Giraitis L (2006) Local Whittle estimation, fully extended for nonstationarity. Preprint · Zbl 1418.62297
[3] Arteche J (2004) Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models. J Econom 119: 131–154 · Zbl 1337.62241 · doi:10.1016/S0304-4076(03)00158-1
[4] Basawa IV, Feygin PD, Heyde CC., (1976). Asymptotic properties of maximum likelihood estimators for stochastic processes. Sankhya: Indian J Stat Ser A 38(Pt.3): 259–270
[5] Boes DC, Davis RA, Gupta SN (1989) Parameter estimation in low order fractionally differenced ARMA processes. Stoch Hydrol Hydraul 3: 97–110 · Zbl 0687.62079 · doi:10.1007/BF01544075
[6] Brockwell P, Davis R (2002) Introduction to time series and forecasting, 2nd ed. Springer, New York · Zbl 0994.62085
[7] Cheridito P (2003) Arbitrage in fractional Brownian motion models. Finance Stoch 7: 533–553 · Zbl 1035.60036 · doi:10.1007/s007800300101
[8] Cheung YW (1993) Test for fractional integration: a Monte Carlo investigation. J Time Ser Anal 14: 331–345 · Zbl 0800.62546 · doi:10.1111/j.1467-9892.1993.tb00149.x
[9] Dahlhaus R (1989) Efficient parameter estimation for self-similar processes. Ann Stat 17(4): 1749–1766 · Zbl 0703.62091 · doi:10.1214/aos/1176347393
[10] Dalla V, Giraitis L, Hidalgo J (2004) Consistent estimation of the memory parameter for nonlinear time series. J Time Ser Anal 27: 211–251 · Zbl 1115.62084 · doi:10.1111/j.1467-9892.2005.00464.x
[11] Fan J, Yao Q (2003) Nonlinear time series. Springer Verlag, New York · Zbl 1014.62103
[12] Fox R, Taqqu MS (1986) Large sample properties of parameter estimates for strongly dependent stationary Gaussian time series. Ann Stat 14: 517–532 · Zbl 0606.62096 · doi:10.1214/aos/1176349936
[13] Geweke J, Porter-Hudak S (1983) The estimation and application of long-memory time series models. J Time Ser Anal 4: 221–238 · Zbl 0534.62062 · doi:10.1111/j.1467-9892.1983.tb00371.x
[14] Ghysels E, Harvey AC, Renault E (1996) Stochastic volatility. In: Maddala G, Rao G(eds) Statistical methods in finance, vol 14 of Handbook of statistics. North-Holland, Amsterdam, pp 119–191
[15] Giraitis L, Surgailis D (1990) A central limit theorem for quadratic forms in strongly dependent linear variables and application to asymptotical normality of Whittle’s estimate. Probab Theory Relat Fields 86: 87–104 · Zbl 0717.62015 · doi:10.1007/BF01207515
[16] Giraitis L, Robinson PM, Surgailis D (2000) A model for long memory conditional heteroskedasticity. Ann Appl Probab 10(3): 1001–1024 · Zbl 1084.62516
[17] Giraitis L, Leipus R, Robinson PM, Surgailis D (2004) LARCH, leverage, and long memory. J Financ Econom 2(2): 177–210 · doi:10.1093/jjfinec/nbh008
[18] Gouriéroux C (1997) ARCH models and financial applications, Springer Series in Statistics. Springer Verlag, New York · Zbl 0880.62107
[19] Hurvich CM, Brodsky J (2001) Broadband semiparametric estimation of the memory parameter of a long-memory time series using fractional exponential model. J Time Ser Anal 22: 221–249 · Zbl 0974.62081 · doi:10.1111/1467-9892.00220
[20] Hurvich CM, Moulines E, Soulier P (2005) Estimation of long memory in volatility. Econometrica 73: 1283–1328 · Zbl 1151.91702 · doi:10.1111/j.1468-0262.2005.00616.x
[21] Jensen MJ (1999) Using wavelets to obtain a consistent ordinary least squares estimator of the long-memory parameter. J Forecast 18: 17–32 · Zbl 04549672 · doi:10.1002/(SICI)1099-131X(199901)18:1<17::AID-FOR686>3.0.CO;2-M
[22] Jensen MJ (2000) An altenative maximum likelihood estimator of long-memory process using compactly supported wavelets. J Econ Dyn Control 24: 361–387 · Zbl 0953.91058 · doi:10.1016/S0165-1889(99)00010-X
[23] Karatzas I, Shreve SE (1991) Brownian motion and stochastic calculus, 2nd edn. Springer, New York · Zbl 0734.60060
[24] Künsch H (1987) Statistical aspects of self-similar processes. In: Prohorov YA, Sazonov VV(eds) Proceedings of the 1st world congress of the Bernoulli society, vol 1.. Science Press, Utrecht, pp 67–74
[25] Lahiri SN (2003) A necessary and sufficient condition for asymptotic independence of discrete Fourier Transforms under short- and long- range dependence. Ann Stat 31(2): 613–641 · Zbl 1039.62087 · doi:10.1214/aos/1051027883
[26] Moulines E, Soulier P (1999) Broad band log-periodogram regression of time series with long range dependence. Ann Stat 27: 1415–1439 · Zbl 0932.62094 · doi:10.1214/aos/1018031103
[27] Nelson DB (1990) ARCH models as diffusion approximations. J Econom 45(1–2): 7–38 · Zbl 0719.60089 · doi:10.1016/0304-4076(90)90092-8
[28] Robinson PM (1991) Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression. J Econom 47: 67–84 · Zbl 0734.62070 · doi:10.1016/0304-4076(91)90078-R
[29] Robinson PM (1995a) Log-periodogram regression of time series with long range dependence. Ann Stat 23: 1048–1072 · Zbl 0838.62085 · doi:10.1214/aos/1176324636
[30] Robinson PM (1995b) Gaussian semiparametric estimation of long range dependence. Ann Stat 23: 1630–1661 · Zbl 0843.62092 · doi:10.1214/aos/1176324317
[31] Shimotsu K, Phillips PCB (2005) Exact local Whittle estimation of fractional integration. Ann Stat 32: 656–692 · Zbl 1091.62084 · doi:10.1214/009053604000000139
[32] Sowell F (1992) Maximum likelihood estimation of stationary univariate fractionally integrated time series models. J Econom 53: 165–188 · Zbl 04508734 · doi:10.1016/0304-4076(92)90084-5
[33] Szabados T (2001) Strong approximation of fractional Brownian motion by moving averages of simple random walks. Stoch Process Appl 92: 31–60 · Zbl 1047.60032 · doi:10.1016/S0304-4149(00)00078-8
[34] Truquet L (2008) A new smoothed quasi maximum likelihood estimator for autoregressive process with LARCH errors. Preprint
[35] Wang Y-Z (2002) Asymptotic nonequivalence of GARCH models and diffusions. Ann Stat 30(3): 754–783 · Zbl 1029.62006 · doi:10.1214/aos/1028674841
[36] Weiss AA (1986) Asymptotic theory for ARCH models: estimation and testing. Econom Theory 2: 107–131 · doi:10.1017/S0266466600011397
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.