×

Three-dimensional transient Navier – Stokes solvers in cylindrical coordinate system based on a spectral collocation method using explicit treatment of the pressure. (English) Zbl 1301.76022

Summary: A spectral collocation method is developed for solving the three-dimensional transient Navier-Stokes equations in cylindrical coordinate system. The Chebyshev-Fourier spectral collocation method is used for spatial approximation. A second-order semi-implicit scheme with explicit treatment of the pressure and implicit treatment of the viscous term is used for the time discretization. The pressure Poisson equation enforces the incompressibility constraint for the velocity field, and the pressure is solved through the pressure Poisson equation with a Neumann boundary condition. We demonstrate by numerical results that this scheme is stable under the standard Courant-Friedrichs-Lewy (CFL) condition, and is second-order accurate in time for the velocity, pressure, and divergence. Further, we develop three accurate, stable, and efficient solvers based on this algorithm by selecting different collocation points in \(r\)-, \(\phi \) -, and \(z\)-directions. Additionally, we compare two sets of collocation points used to avoid the axis, and the numerical results indicate that using the Chebyshev Gauss – Radau points in radial direction to avoid the axis is more practical for solving our problem, and its main advantage is to save the CPU time compared with using the Chebyshev Gauss-Lobatto points in radial direction to avoid the axis.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
76M25 Other numerical methods (fluid mechanics) (MSC2010)
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs

Software:

RADAU; Matlab
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chorin, Numerical solution of the Navier-Stokes equations, Mathematics of Computation 22 pp 745– (1968) · Zbl 0198.50103 · doi:10.1090/S0025-5718-1968-0242392-2
[2] Temam, Sur l’approximation de la solution des equations Navier-Stokes par la methode des Fractionnarires II, Archive for Rational Mechanics and Analysis 33 pp 377– (1969) · Zbl 0207.16904 · doi:10.1007/BF00247696
[3] Goda, A multistep technique with implicit difference schemes for calculating two- and three-dimensional cavity flows, Journal of Computational Physics 30 pp 76– (1979) · Zbl 0405.76017 · doi:10.1016/0021-9991(79)90088-3
[4] Guermond, An overview of projection methods for incompressible flows, Computer Methods in Applied Mechanics and Engineering 195 pp 6011– (2006) · Zbl 1122.76072 · doi:10.1016/j.cma.2005.10.010
[5] Johnston, Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term, Journal of Computational Physics 199 pp 221– (2004) · Zbl 1127.76343 · doi:10.1016/j.jcp.2004.02.009
[6] Bell, A second-order projection method for the incompressible Navier-Stokes equations, Journal of Computational Physics 85 pp 257– (1989) · Zbl 0681.76030 · doi:10.1016/0021-9991(89)90151-4
[7] Karniadakis, High-order splitting methods for the incompressible Navier-Stokes equations, Journal of Computational Physics 97 pp 414– (1991) · Zbl 0738.76050 · doi:10.1016/0021-9991(91)90007-8
[8] Kim, Application of a fractional-step method to incompressible Navier-Stokes equations, Journal of Computational Physics 59 pp 308– (1985) · Zbl 0582.76038 · doi:10.1016/0021-9991(85)90148-2
[9] Van Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM Journal on Scientific and Statistical Computing 7 pp 870– (1986) · Zbl 0594.76023 · doi:10.1137/0907059
[10] Lopez, An efficient spectral-projection method for the Navier-Stokes equations in cylindrical geometries I. Axisymmetric cases, Journal of Computational Physics 139 pp 308– (1998) · Zbl 0908.76068 · doi:10.1006/jcph.1997.5872
[11] Lopez, An efficient spectral-projection method for the Navier-Stokes equations in cylindrical geometries II. Three-dimensional cases, Journal of Computational Physics 176 pp 384– (2002) · Zbl 1130.76392 · doi:10.1006/jcph.2002.6993
[12] Hugues, An improved projection scheme applied to pseudospectral methods for the incompressible Navier-Stokes equations, International Journal for Numerical Methods in Fluids 28 pp 501– (1998) · Zbl 0932.76065 · doi:10.1002/(SICI)1097-0363(19980915)28:3<501::AID-FLD730>3.0.CO;2-S
[13] Serre, A three-dimensional pseudospectral method for rotating flows in a cylinder, Computers & Fluids 30 pp 491– (2001) · Zbl 1057.76049 · doi:10.1016/S0045-7930(00)00023-2
[14] Raspo, A spectral projection method for the simulation of complex three-dimensional rotating flows, Computers & Fluids 31 pp 745– (2002) · Zbl 1028.76036 · doi:10.1016/S0045-7930(01)00070-6
[15] Le Marec, Collocation method for convective flow induced by directional solidification in a cylinder, International Journal for Numerical Methods in Fluids 22 pp 393– (1996) · Zbl 0887.76056 · doi:10.1002/(SICI)1097-0363(19960315)22:5<393::AID-FLD358>3.0.CO;2-P
[16] Pulicani, A Fourier-Chebyshev pseudospectral method for solving steady 3-D Navier-Stokes equations in cylindrical cavities, Computers & Fluids 20 pp 93– (1991) · Zbl 0731.76056 · doi:10.1016/0045-7930(91)90014-9
[17] Pasquetti, A spectral algorithm for the Stokes problem in vorticity-vector potential formulation and cylindrical geometry, Computer Methods in Applied Mechanics and Engineering 117 pp 71– (1994) · Zbl 0846.76073 · doi:10.1016/0045-7825(94)90077-9
[18] Gresho, On pressure boundary conditions for the incompressible Navier-Stokes equations, International Journal for Numerical Methods in Fluids 7 pp 1111– (1987) · Zbl 0644.76025 · doi:10.1002/fld.1650071008
[19] Gresho, Some current CFD issues relevant to the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering 87 pp 201– (1991) · Zbl 0760.76018 · doi:10.1016/0045-7825(91)90006-R
[20] Orszag, Secondary instability of wall-bounded shear flows, The Journal of Fluid Mechanics 128 pp 347– (1983) · Zbl 0556.76039 · doi:10.1017/S0022112083000518
[21] Peyret, Spectral Methods for Incompressible Viscous Flow (2002) · Zbl 1005.76001 · doi:10.1007/978-1-4757-6557-1
[22] Boyd, Chebyshev and Fourier Spectral Methods (2001) · Zbl 0994.65128
[23] Canuto, Methods/Evolution to Complex Geometries and Applications to Fluid Dynamics (2007)
[24] Canuto, Spectral Methods in Fluid Dynamics (1989)
[25] Trefethen, Spectral Methods in MATLAB (2000) · Zbl 0953.68643 · doi:10.1137/1.9780898719598
[26] Ehrenstein, A Chebyshev collocation method for the Navier-Stokes equations with application to double-diffusive convection, International Journal for Numerical Methods in Fluids 9 pp 427– (1989) · Zbl 0665.76107 · doi:10.1002/fld.1650090405
[27] Chen, A direct spectral collocation poisson solver in polar and cylindrical coordinates, Journal of Computational Physics 160 pp 453– (2000) · Zbl 0951.65125 · doi:10.1006/jcph.2000.6461
[28] Yu Y The study of Poisson solvers using collocation spectral method with Dirichlet and Neumann boundary conditions in polar and cylindrical coordinate systems 2007
[29] Li, Fourier-Chebyshev collocation spectral Poisson solvers in polar and cylindrical coordinate systems, Journal of Northeastern University (Natural Science) 29 (2) pp 241– (2008) · Zbl 1174.76349
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.