×

The independent set perturbation adjoint method: a new method of differentiating mesh-based fluids models. (English) Zbl 1285.76015

Summary: A new scheme for differentiating complex mesh-based numerical models (e.g. finite element models), the Independent Set Perturbation Adjoint method (ISP-Adjoint), is presented. Differentiation of the matrices and source terms making up the discrete forward model is realized by a graph coloring approach (forming independent sets of variables) combined with a perturbation method to obtain gradients in numerical discretizations. This information is then convolved with the ’mathematical adjoint’, which uses the transpose matrix of the discrete forward model. The adjoint code is simple to implement even with complex governing equations, discretization methods and non-linear parameterizations. Importantly, the adjoint code is independent of the implementation of the forward code. This greatly reduces the effort required to implement the adjoint model and maintain it as the forward model continues to be developed; as compared with more traditional approaches such as applying automatic differentiation tools. The approach can be readily extended to reduced-order models. The method is applied to a one-dimensional Burgers’ equation problem, with a highly non-linear high-resolution discretization method, and to a two-dimensional, non-linear, reduced-order model of an idealized ocean gyre.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems

Software:

MITgcm; CsegGraph
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Moore, Initialisation and data assimilation in models of the Indian Ocean, Journal of Physical Oceanography 17 pp 1965– (1987) · doi:10.1175/1520-0485(1987)017<1965:IADAIM>2.0.CO;2
[2] Le Dimet FX Navon IM 1988 http://people.scs.fsu.edu/navon/freqreq.html
[3] Wenzel, The annual cycle of the global ocean circulation as determined by 4D VAR data assimilation, Progress in Oceanography 48 (1) pp 73– (2001) · doi:10.1016/S0079-6611(00)00048-3
[4] Zhu, Impact of parameter estimation on the performance of the FSU global spectral model using its full-physics adjoint, Monthly Weather Review 127 (7) pp 1497– (1999) · doi:10.1175/1520-0493(1999)127<1497:IOPEOT>2.0.CO;2
[5] Cacuci, Sensitivity Uncertainty Analysis: Applications to Large-scale Systems 2 (2005) · Zbl 1083.60002 · doi:10.1201/9780203483572
[6] Sanders, Adjoint sensitivity analysis for shallow water wave control, Journal of Engineering Mechanics 126 pp 909– (2000) · doi:10.1061/(ASCE)0733-9399(2000)126:9(909)
[7] Daescu, Adaptive observations in the context of 4D-Var data assimilation, Meteorology and Atmospheric Physics 85 (4) pp 205– (2004) · doi:10.1007/s00703-003-0011-5
[8] Pierce, Adjoint recovery of superconvergent functionals from PDE approximations, SIAM Review 42 pp 247– (2000) · Zbl 0948.65119 · doi:10.1137/S0036144598349423
[9] Power, Adjoint goal-based error norms for adaptive mesh ocean modelling, Ocean Modelling 15 pp 3– (2006) · doi:10.1016/j.ocemod.2006.05.001
[10] Marta, A methodology for the development of discrete adjoint solvers using automatic differentiation tools, International Journal of Computational Fluid Dynamics 21 (9-10) pp 307– (2007) · Zbl 1184.76832 · doi:10.1080/10618560701678647
[11] Martins, A coupled-adjoint sensitivity analysis method for high-fidelity aero-structural design, Optimization and Engineering 6 (1) pp 33– (2005) · Zbl 1145.76418 · doi:10.1023/B:OPTE.0000048536.47956.62
[12] Mohammadi, Computational Differentiation: Techniques, Applications, and Tools pp 309– (1996)
[13] Sherman, First- and second-order aerodynamic sensitivity derivatives via automatic differentiation with incremental iterative methods, Journal of Computational Physics 129 (2) pp 307– (1996) · Zbl 0933.76070 · doi:10.1006/jcph.1996.0252
[14] Griewank, Evaluating Derivatives Principles and Techniques of Algorithmic Differentiation pp 438– (2008) · Zbl 1159.65026 · doi:10.1137/1.9780898717761
[15] Boudjemaa, Advanced Mathematical and Computational Tools in Metrology VI pp 170– (2004) · doi:10.1142/9789812702647_0014
[16] Coleman, Estimation of sparse Jacobian matrices and graph coloring problems, SIAM Journal on Numeric Analysis 20 pp 187– (1983) · Zbl 0527.65033 · doi:10.1137/0720013
[17] Coleman, Estimation of sparse Hessian matrices and graph coloring problems, Mathematical Programming 28 pp 243– (1984) · Zbl 0572.65029 · doi:10.1007/BF02612334
[18] Coleman, The efficient computation of sparse Jacobian matrices using automatic differentiation, SIAM Journal on Scientific Computing 19 (4) pp 1210– (1998) · Zbl 0913.65041 · doi:10.1137/S1064827595295349
[19] Coleman, The efficient computation of structured gradients using automatic differentiation, SIAM Journal on Scientific Computing 20 (4) pp 1430– (1999) · Zbl 0934.65026 · doi:10.1137/S1064827597320794
[20] Hossain, Graph coloring in the estimation of sparse derivative matrices: instances and applications, Discrete Applied Mathematics 156 pp 280– (2008) · Zbl 1130.65046 · doi:10.1016/j.dam.2006.07.018
[21] Coleman, Efficient calculation of Jacobian and adjoint vector products in the wave propagational inverse problem using automatic differentiation, Journal of Computational Physics 157 (1) pp 234– (2000) · Zbl 0947.65104 · doi:10.1006/jcph.1999.6373
[22] Gebremedhin, What color is your Jacobian? Graph coloring for computing derivatives, SIAM Review 47 (4) pp 629– (2005) · Zbl 1076.05034 · doi:10.1137/S0036144504444711
[23] Gebremedhin, Dagstuhl Seminar Proceedings 09061, Combinatorial Scientific Computing (2009)
[24] Jones, A parallel graph coloring heuristic, SIAM Journal on Scientific Computing 14 (3) pp 654– (1993) · Zbl 0772.68046 · doi:10.1137/0914041
[25] Baalousha, Stochastic modelling and risk analysis of groundwater pollution using form coupled with automatic differentiation, Advances in Water Resources 29 pp 1815– (2006) · doi:10.1016/j.advwatres.2006.01.006
[26] Glowinski, A multigrid preconditioner and automatic differentiation for non-equilibrium radiation diffusion problems, Journal of Computational Physics 207 pp 354– (2005) · Zbl 1070.65092 · doi:10.1016/j.jcp.2005.01.032
[27] Green, Sensitivity derivatives for advanced CFD algorithm and viscous modeling parameters via automatic differentiation, Journal of Computational Physics 125 (2) pp 313– (1996) · Zbl 0848.76058 · doi:10.1006/jcph.1996.0096
[28] Bischof, Automatic differentiation of advanced CFD codes for multidisciplinary design, Computing Systems in Engineering 3 (6) pp 625– (1992) · doi:10.1016/0956-0521(92)90014-A
[29] Liu, On the properties of discrete adjoints of numerical methods for the advection equation, International Journal for Numerical Methods in Fluids 56 (7) pp 769– (2008) · Zbl 1134.65057 · doi:10.1002/fld.1547
[30] Reuther, Constrained multipoint aerodynamic shape optimization using an adjoint formulation and parallel computers: part i. j. aircraft, Journal of Aircraft 36 (1) pp 51– (1999) · doi:10.2514/2.2413
[31] Reuther, Constrained multipoint aerodynamic shape optimization using an adjoint formulation and parallel computers: part ii. j. aircraft, Journal of Aircraft 36 (1) pp 61– (1999) · doi:10.2514/2.2414
[32] Heimbach, An efficient exact adjoint of the parallel MIT general circulation model, generated via automatic differentiation, Future Generation Computer Systems 21 (8) pp 1356– (2005) · doi:10.1016/j.future.2004.11.010
[33] Stammer, The global ocean circulation during 1992-1997, estimated from ocean observations and a general circulation model, Journal of Geophysical Research 107 (C9) pp 1– (2002) · doi:10.1029/2001JC000888
[34] Piggott, A new computational framework for multi-scale ocean modelling based on adapting unstructured meshes, International Journal for Numerical Methods in Fluids 56 pp 1003– (2008) · Zbl 1220.76045 · doi:10.1002/fld.1663
[35] Leonard, The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection, Computing Methods in Applied Mechanics and Engineering 88 pp 17– (1991) · Zbl 0746.76067 · doi:10.1016/0045-7825(91)90232-U
[36] Maffray, CMS Books in Mathematics, vol. 11, in: Recent Advances in Algorithms and Combinatorics pp 65– (2003) · doi:10.1007/0-387-22444-0_3
[37] Ford, A nonhydrostatic finite-element model for three-dimensional stratified oceanic flows. Part I: model formulation, Monthly Weather Review 132 (12) pp 2816– (2004) · doi:10.1175/MWR2824.1
[38] Fang, Reduced order modelling of an adaptive mesh ocean model, International Journal for Numerical Methods in Fluids 59 (8) pp 827– (2009) · Zbl 1155.86004 · doi:10.1002/fld.1841
[39] Hoffman, A four-dimensional analysis exactly satisfying equations of motion, Monthly Weather Review 114 (2) pp 388– (1986) · doi:10.1175/1520-0493(1986)114<0388:AFDAES>2.0.CO;2
[40] Nielsen, Efficient construction of discrete adjoint operators on unstructured grids using complex variables, AIAA Journal 44 (4) pp 827– (2006) · doi:10.2514/1.15830
[41] Nielsen, Using an adjoint approach to eliminate mesh sensitivities in computational design, AIAA Journal 44 (5) pp 948– (2006) · doi:10.2514/1.16052
[42] Curtis, On the estimation of sparse Jacobian matrices, Journal of the Institute of Mathematical Applications 13 pp 117– (1974) · Zbl 0273.65036 · doi:10.1093/imamat/13.1.117
[43] Pain, A neural network graph partitioning procedure for grid-based domain decomposition, International Journal for Numerical Methods in Engineering 44 pp 593– (1998) · Zbl 0938.65143 · doi:10.1002/(SICI)1097-0207(19990220)44:5<593::AID-NME516>3.0.CO;2-0
[44] Navon, Variational data assimilation with an adiabatic version of the NMC Spectral Model, Monthly Weather Review 120 pp 55– (1992) · doi:10.1175/1520-0493(1992)120<1433:VDAWAA>2.0.CO;2
[45] Ackroyd, Research Studies in Particle and Nuclear Technology 6 (1997)
[46] Fang, A POD goal-oriented error measure for mesh optimisation, International Journal for Numerical Methods in Fluids (2009) · Zbl 1425.65096 · doi:10.1002/fld.2182
[47] Vermeulen, Model-reduced variational data assimilation, Monthly Weather Review 134 pp 2888– (2006) · doi:10.1175/MWR3209.1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.