×

Modeling of bone conduction of sound in the human head using hp-finite elements: code design and verification. (English) Zbl 1228.74046

Summary: We focus on the development of a reliable numerical model for investigating the bone-conduction of sound in the human head. The main challenge of the problem is the lack of fundamental knowledge regarding the transmission of acoustic energy through non-airborne pathways to the cochlea. A fully coupled model based on the acoustic/elastic interaction problem with a detailed resolution of the cochlea region and its interface with the skull and the air pathways, should provide an insight into this fundamental, long standing research problem. To this aim we have developed a 3D \(h\)p-finite element code that supports elements of all shapes (tetrahedra, prisms and pyramids) to better capture the geometrical features of the head. We have tested the code on a multilayered sphere and employed it to solve an idealized model of head. In the future we hope to attack a model with a more realistic geometry.

MSC:

74L15 Biomechanical solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
92C10 Biomechanics

Software:

VTK; Netgen
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Ainsworth, M.; Coyle, J., Hierarchic finite element bases on unstructured tetrahedral meshes, Int. J. Numer. Methods Engrg., 58, 14, 2103-2130 (2003) · Zbl 1042.65088
[2] Bekesy, G., Vibration of the head in a sound field and its role in hearing by bone conduction, J. Acoust. Soc. Am., 20, 6, 749-760 (1948)
[3] M. Bleszynski, E. Bleszynski, Mie series solution for a coupled acoustics/elasticity multilayered sphere problem, 2009. Available from the authors upon request.; M. Bleszynski, E. Bleszynski, Mie series solution for a coupled acoustics/elasticity multilayered sphere problem, 2009. Available from the authors upon request. · Zbl 1071.78015
[4] Böhnke, F.; Arnold, W., Bone conduction in a three-dimensional model of the cochlea, J. Oto-Rhino-Laryngol., 68, 6, 393-396 (2006)
[5] Demkowicz, L., Computing with hp Finite Elements. I. One- and Two-Dimensional Elliptic and Maxwell Problems (2006), Chapman & Hall/CRC Press: Chapman & Hall/CRC Press Taylor and Francis
[6] L. Demkowicz, P. Gatto, W. Qiu, A. Joplin, \(G}^1\)<http://dx.doi.org/10.1016/j.cma.2008.05.026>; L. Demkowicz, P. Gatto, W. Qiu, A. Joplin, \(G}^1\)<http://dx.doi.org/10.1016/j.cma.2008.05.026> · Zbl 1157.65485
[7] Demkowicz, L.; Kurtz, J.; Pardo, D.; Paszyński, M.; Rachowicz, W.; Zdunek, A., Computing with hp Finite Elements. II. Frontiers: Three-Dimensional Elliptic and Maxwell Problems with Applications (2007), Chapman & Hall/CRC
[8] L. Demkowicz, J. Kurtz, W. Qiu, hp; L. Demkowicz, J. Kurtz, W. Qiu, hp
[9] Dong, W.; Olson, E. S., Supporting evidence for reverse cochlear traveling waves, J. Acoust. Soc. Am., 222-240 (2008)
[10] Gatica, G. N.; Márquez, A.; Meddahi, S., Analysis of the coupling of primal and dual-mixed finite element methods for a two-dimensional fluid-solid interaction problem, SIAM J. Numer. Anal., 45, 5, 2072-2097 (2007) · Zbl 1225.74087
[11] P. Gatto, L. Demkowicz. Construction of h1-conforming hierarchical shape functions for elements of all shapes and transfinite interpolation, Technical Report 14, ICES, 2009. Finite Elements in Analysis and Design, in review.; P. Gatto, L. Demkowicz. Construction of h1-conforming hierarchical shape functions for elements of all shapes and transfinite interpolation, Technical Report 14, ICES, 2009. Finite Elements in Analysis and Design, in review.
[12] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[13] Majda, A., Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, vol. 53 (1984), Springer-Verlag: Springer-Verlag New York · Zbl 0537.76001
[14] Ch. Michler, L. Demkowicz, J. Kurtz, D. Pardo, Improving the performance of perfectly matched layers by means of hp; Ch. Michler, L. Demkowicz, J. Kurtz, D. Pardo, Improving the performance of perfectly matched layers by means of hp · Zbl 1118.65123
[15] Nakajima, H. H.; Dong, W.; Olson, E. S.; Merchant, S. N.; Ravicz, M. E.; Rosowski, J. J., Differential intracochlear sound pressure measurements in normal human temporal bones, J. Assoc. Res. Otolaryngol., 10, 1, 23-36 (2009)
[16] N. Nigam, J. Phillips, Higher-order finite elements on pyramids: approximation spaces, unisolvency and exactness, IMA Journal of Numerical Analysis, submitted for publication.; N. Nigam, J. Phillips, Higher-order finite elements on pyramids: approximation spaces, unisolvency and exactness, IMA Journal of Numerical Analysis, submitted for publication.
[17] M. Paszyński, L. Demkowicz, J. Kurtz, Towards finite element modeling of the acoustics of human head, World Acad. Engrg. Technol., 48, 2008.; M. Paszyński, L. Demkowicz, J. Kurtz, Towards finite element modeling of the acoustics of human head, World Acad. Engrg. Technol., 48, 2008.
[18] M. Paszyński, D. Pardo, A. Paszyńska, L. Demkowicz, Out-of-core multi-frontal solver for multi-physics hp; M. Paszyński, D. Pardo, A. Paszyńska, L. Demkowicz, Out-of-core multi-frontal solver for multi-physics hp
[19] Paszyński, M.; Pardo, D.; Paszyńska, A., Parallel multi-frontal solver for \(p\)-adaptive finite element modeling of multi-physics computational problems, J. Comput. Sci., 1, 1, 48-54 (2010)
[20] Paszyński, M.; Pardo, D.; Torres-Verdín, C.; Demkowicz, L.; Calo, V., A parallel direct solver for the self-adaptive hp finite element method, J. Parallel Distrib. Comput., 70, 3, 270-281 (2010) · Zbl 1233.68079
[21] Paszyński, M.; Schaefer, R., Graph grammar-driven parallel partial differential equation solver, Concurrency Comput.: Pract. Exp., 22, 9, 1063-1097 (2010)
[22] Ravicz, M. E.; Olson, E. S.; Rosowski, J. J., Sound pressure distribution and energy flow within the gerbil ear canal from 100Hz to 80kHz, J. Acoust. Soc. Am., 122, 2154-2173 (2007)
[23] Sanchez Hubert, J.; Sanchez Palencia, E., Vibration and Coupling of Continuous Systems: Asymptotic Methods (1989), Springer · Zbl 0698.70003
[24] Schöberl, J., NETGEN - an advancing front 2D/3D-mesh generator based on abstract rules, Comput. Visual. Sci., 1, 41-52 (1997), available from http://www.hpfem.jku.at/netgen/ · Zbl 0883.68130
[25] Schöberl, J.; Zaglmayr, S., High order nédélec elements with local complete sequence property, COMPEL: Int. J. Comput. Math. Electr. Electron. Engrg., 24, 2 (2005) · Zbl 1135.78337
[26] W. Schroeder, K. Martin, B. Lorensen, The Visualization Toolkit: An Object-Oriented Approach To 3D Graphics, fourth ed., Kitware, Inc.; W. Schroeder, K. Martin, B. Lorensen, The Visualization Toolkit: An Object-Oriented Approach To 3D Graphics, fourth ed., Kitware, Inc.
[27] Solín, P., Partial Differential Equations and the Finite Element Method (2005), Wiley
[28] Stenfelt, S.; Hato, N.; Goode, R. L., Factors contributing to bone conduction: the middle ear, J. Acoust. Soc. Am., 111, 947 (2002)
[29] Stenfelt, S.; Goode, R. L., Bone-conducted sound: physiological and clinical aspects, Otol. Neurotol., 26, 1245-1261 (2005)
[30] Szabo, B. A.; Babuška, I., Finite Element Analysis (1991), Wiley: Wiley New York
[31] Tews, R.; Rachowicz, W., Application of an automatic hp adaptive finite element method for thin-walled structures, Comput. Methods Appl. Mech. Engrg., 198, 21-26, 1967-1984 (2009) · Zbl 1227.74099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.