×

A time-reversal lattice Boltzmann method. (English) Zbl 1308.76225

Summary: We address the time-reversed simulation of viscous flows by the lattice Boltzmann method (LB). The theoretical derivation of the reversed LB from the Boltzmann equation is detailed, and the method implemented for weakly compressible flows using the D2Q9 scheme. The implementation of boundary conditions is also discussed. The accuracy and stability are illustrated by four test cases, namely the propagation of an acoustic wave in a medium at rest and in an uniform mean flow, the Taylor-Green vortex decay and the vortex pair-wall collision.

MSC:

76M28 Particle methods and lattice-gas methods
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs

Software:

Hemelb; MUPHY
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] G.M. Lilley, On the noise from jets, in: AGARD CP-131, 1974, pp. 13.1-13.12.; G.M. Lilley, On the noise from jets, in: AGARD CP-131, 1974, pp. 13.1-13.12.
[2] Bogey, C.; Bailly, C., An analysis of the correlations between the turbulent flow and the sound pressure fields of subsonic jets, J. Fluid Mech., 583, 71-97 (2007) · Zbl 1116.76073
[3] Spagnoli, B.; Airiau, C., Adjoint analysis for noise control in a two-dimensional compressible mixing layer, Comput. Fluids, 37, 475-486 (2008), (Turbulent flow and noise generation) · Zbl 1237.76179
[4] Deneuve, A.; Druault, P.; Marchiano, R.; Sagaut, P., A coupled time-reversal/complex differentiation method for aeroacoustic sensitivity analysis: towards a source detection procedure, J. Fluid Mech., 642, 181-212 (2010) · Zbl 1183.76854
[5] Succi, S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (2001), Oxford University Press · Zbl 0990.76001
[6] Benzi, R.; Succi, S.; Vergassola, M., The lattice Boltzmann equation: theory and applications, Phys. Rep., 222, 145-197 (1992)
[7] Aidun, C. K.; Clausen, J. R., Lattice-Boltzmann method for complex flows, Annu. Rev. Fluid Mech., 42, 439-472 (2010) · Zbl 1345.76087
[8] Amati, G.; Succi, S.; Piva, R., Massively parallel lattice-Boltzmann simulation of turbulent channel flow, Int. J. Mod. Phys. C, 8, 869-877 (1997)
[9] Kandhai, D.; Koponen, A.; Hoekstra, A. G.; Kataja, M.; Timonen, J.; Sloot, P. M.A., Lattice-Boltzmann hydrodynamics on parallel systems, Comput. Phys. Commun., 111, 14-26 (1998) · Zbl 0942.76062
[10] Mazzeo, M.; Coveney, P., Hemelb: a high performance parallel lattice-Boltzmann code for large scale fluid flow in complex geometries, Comput. Phys. Commun., 178, 894-914 (2008) · Zbl 1196.76008
[11] Bernaschi, M.; Melchionna, S.; Succi, S.; Fyta, M.; Kaxiras, E.; Sircar, J., Muphy: a parallel multi physics/scale code for high performance bio-fluidic simulations, Comput. Phys. Commun., 180, 1495-1502 (2009)
[12] Caiazzo, A.; Evans, D.; Falcone, J.-L.; Hegewald, J.; Lorenz, E.; Stahl, B.; Wang, D.; Bernsdorf, J.; Chopard, B.; Gunn, J.; Hose, R.; Krafczyk, M.; Lawford, P.; Smallwood, R.; Walker, D.; Hoekstra, A., A complex automata approach for in-stent restenosis: two-dimensional multiscale modelling and simulations, J. Comput. Sci., 2, 9-17 (2011)
[13] S. Geller, M. Krafczyk, J. Tölke, S. Turek, J. Hron, Benchmark computations based on lattice-Boltzmann, finite element and finite volume methods for laminar flows, in: Proceedings of the First International Conference for Mesoscopic Methods in Engineering and Science. Comput. Fluids 35 (2006) 888-897.; S. Geller, M. Krafczyk, J. Tölke, S. Turek, J. Hron, Benchmark computations based on lattice-Boltzmann, finite element and finite volume methods for laminar flows, in: Proceedings of the First International Conference for Mesoscopic Methods in Engineering and Science. Comput. Fluids 35 (2006) 888-897. · Zbl 1177.76313
[14] Marié, S.; Ricot, D.; Sagaut, P., Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics, J. Comput. Phys., 228, 1056-1070 (2009) · Zbl 1330.76115
[15] Ricot, D.; Marié, S.; Sagaut, P.; Bailly, C., lattice Boltzmann method with selective viscosity filter, J. Comput. Phys., 228, 4478-4490 (2009) · Zbl 1395.76073
[16] Fink, M.; Cassereau, D.; Derode, A.; Prada, C.; Roux, P.; Tanter, M.; Thomas, J.-L.; Wu, F., Time-reversed acoustics, Prog. Rep. Phys., 63, 1933-1995 (2000)
[17] Serrin, J., The initial value problem for Navier-Stokes equations, (Non-Linear Problems (1963), University Wisconsin Press) · Zbl 0115.08502
[18] Knops, R. J.; Payne, L. E., On the stability of solutions of the Navier-Stokes equations backward in time, Arch. Ration. Mech. Anal., 29, 331-335 (1968) · Zbl 0159.14201
[19] Payne, L. E.; Straughan, B., Comparison of viscous flows backward in time with small data, Int. J. Nonlinear Mech., 24, 209-214 (1989) · Zbl 0693.76035
[20] Payne, L., On stabilizing ill-posed cauchy problems for the Navier-Stokes equations, (Ames, W.; Harrell II, E.; Herod, J., Differential Equations with Applications to Mathematical Physics. Differential Equations with Applications to Mathematical Physics, Mathematics in Science and Engineering, vol. 192 (1993), Elsevier), 261-271 · Zbl 0790.35110
[21] Griffa, M.; Anderson, B. E.; Guyer, R. A.; Ulrich, T. J.; Johnson, P. A., Investigation of the robustness of time reversal acoustics in solid media through the reconstruction of temporally symmetric sources, J. Phys. D. Appl. Phys., 41 (2008)
[22] Bhatnagar, P. L.; Gross, E. P.; Krook, M., A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94, 511-525 (1954) · Zbl 0055.23609
[23] (Chapman, S.; Cowling, T. G., The Mathematical Theory of Non-Uniform Gases (1991), Cambridge University Press: Cambridge University Press Cambridge, UK), 447, ISBN 052140844X · Zbl 0726.76084
[24] Huang, K., Statistical mechanics (1987), John Wiley · Zbl 1041.82500
[25] Grad, H., On the kinetic theory of rarefied gases, Commun. Pure Appl. Math., 2, 331-407 (1949) · Zbl 0037.13104
[26] Grad, H., Note on \(n\)-dimensional hermite polynomials, Commun. Pure Appl. Math., 2, 325-330 (1949) · Zbl 0036.04102
[27] Shan, X.; Yuan, X.-F.; Chen, H., Kinetic theory representation of hydrodynamics: a way Beyon the Navier-Stokes equation, J. Fluid Mech., 550, 413-441 (2006) · Zbl 1097.76061
[28] O. Malaspinas, lattice Boltzmann method for the simulation of viscoelastic fluid flows, Ph.D. Thesis, EPFL, 2009.; O. Malaspinas, lattice Boltzmann method for the simulation of viscoelastic fluid flows, Ph.D. Thesis, EPFL, 2009.
[29] Dellar, P. J., Bulk and shear viscosities in lattice Boltzmann equations, Phys. Rev. E, 64, 031203 (2001)
[30] Mattila, K.; Hyväluoma, J.; Rossi, T.; Aspnäs, M.; Westerholm, J., An efficient swap algorithm for the lattice Boltzmann method, Comput. Phys. Commun., 176, 200-210 (2007) · Zbl 1196.76066
[31] He, X.; Zou, Q.; Luo, L.-S.; Dembo, M., Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model, J. Stat. Phys., 87, 115-136 (1997) · Zbl 0937.82043
[32] Skordos, P., Initial and boundary conditions for the lattice Boltzmann method, Phys. Rev. E, 48, 4823-4842 (1993)
[33] Zou, Q.; Hou, S.; Doolen, G., Analytical solutions of the lattice Boltzmann BGK model, J. Stat. Phys., 81, 319-334 (1995) · Zbl 1081.82623
[34] Latt, J.; Chopard, B.; Malaspinas, O.; Deville, M.; Michler, A., Straight velocity boundaries in the lattice Boltzmann method, Phys. Rev. E, 77, 056703 (2008)
[35] Cassereau, D.; Fink, M., Time-reversal of ultrasonic fields. III. Theory of the closed time-reversal cavity, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 39, 579-592 (1992)
[36] Clercx, H.; Bruneau, C.-H., The normal and oblique collision of a dipole with a no-slip boundary, Comput. Fluids, 35, 245-279 (2006) · Zbl 1160.76328
[37] Latt, J.; Chopard, B., A benchmark case for lattice Boltzmann: turbulent dipole-wall collision, Int. J. Mod. Phys. C, 18, 619-626 (2007) · Zbl 1388.76300
[38] Labs project. <http://www.systematic-paris-region.org/fr/projets/labs>; Labs project. <http://www.systematic-paris-region.org/fr/projets/labs>
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.