×

Noncommutative symmetric functions. VII: Free quasi-symmetric functions revisited. (English) Zbl 1233.05200

Summary: We prove a Cauchy identity for free quasi-symmetric functions and apply it to the study of various bases. A free Weyl formula and a generalization of the splitting formula are also discussed.
For part VI see [“Noncommutative symmetric functions. VI: Free quasi-symmetric functions and related algebras”, Int. J. Algebra Comput. 12, No. 5, 671–717 (2002; Zbl 1027.05107)].

MSC:

05E05 Symmetric functions and generalizations
16T30 Connections of Hopf algebras with combinatorics

Citations:

Zbl 1027.05107
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aguiar M., Sottile F.: Structure of the Malvenuto-Reutenauer Hopf algebra of permutations. Adv. Math. 191(2), 225–275 (2005) · Zbl 1056.05139
[2] Björner, A.: Orderings of Coxeter groups. In: Greene, C. (ed.) Combinatorics and Algebra, Contemp. Math., 34, pp. 175–195. Amer. Math. Soc., Providence, RI (1984) · Zbl 0594.20029
[3] Blessenohl D.: An unpublished theorem of Manfred Schocker and the Patras-Reutenauer algebra. J. Algebraic Combin. 28(1), 25–42 (2008) · Zbl 1210.05176
[4] Duchamp G., Hivert F., Thibon J.-Y.: Noncommutative symmetric functions VI: free quasi-symmetric functions and related algebras. Internat. J. Algebra Comput. 12(5), 671–717 (2002) · Zbl 1027.05107
[5] Edelman, P.: Geometry and the Möbius function of the weak Bruhat order of the symmetric group. Preprint. (1983)
[6] Garsia A.M., Reutenauer C.: A decomposition of Solomon’s descent algebra. Adv.Math. 77(2), 189–262 (1989) · Zbl 0716.20006
[7] Gelfand I.M., Krob D., Lascoux A., Leclerc B., Retakh V.S., Thibon J.-Y.: Noncommutative symmetric functions. Adv. Math. 112(2), 218–348 (1995) · Zbl 0831.05063
[8] Hivert, F.: Combinatoire des fonctions quasi-symétriques. Ph.D. thesis, Marne-la-Valle University, Marne la Valle (1999)
[9] Hivert F., Novelli J.-C., Thibon J.-Y.: The algebra of binary search trees. Theoret. Comput. Sci. 339(1), 129–165 (2005) · Zbl 1072.05052
[10] Hivert F., Novelli J.-C., Thibon J.-Y.: Commutative combinatorial Hopf algebras. J. Algebraic Combin. 28(1), 65–95 (2008) · Zbl 1181.16031
[11] Hivert, F., Thiéry, N.M.: MuPAD-Combinat, an open-source package for research in algebraic combinatorics. Sém. Lothar. Combin. 51, Art. B51z (2004/05) · Zbl 1062.05001
[12] Krob D., Thibon J.-Y.: Noncommutative symmetric functions IV: quantum linear groups and Hecke algebras at q = 0. J. Algebraic Combin. 6(4), 339–376 (1997) · Zbl 0881.05120
[13] Lascoux, A., Schützenberger, M.-P.: Le monoïde plaxique. In: De Luca, A. (ed.) Noncommutative Structures in Algebra and Geometric Combinatorics, pp. 129–156. CNR, Rome (1981)
[14] Loday J.-L., Ronco M.O.: Hopf algebra of the planar binary trees. Adv. Math. 139(2), 293–309 (1998) · Zbl 0926.16032
[15] Loday J.-L., Ronco M.O.: Order structure on the algebra of permutations and of planar binary trees. J. Algebraic Combin. 15(3), 253–270 (2002) · Zbl 0998.05013
[16] Malvenuto C., Reutenauer C.: Duality between quasi-symmetric functions and the Solomon descent algebra. J. Algebra 177(3), 967–982 (1995) · Zbl 0838.05100
[17] Novelli J.-C.: On the hypoplactic monoid. Discrete Math. 217(1-3), 315–336 (2000) · Zbl 0960.05106
[18] Novelli J.-C., Thibon J.-Y.: Hopf algebras and dendriform structures arising from parking functions. Fund. Math. 193(3), 189–241 (2007) · Zbl 1127.16033
[19] Patras F., Reutenauer C.: Lie representations and an algebra containing Solomon’s. J. Algebraic Combin. 16(3), 301–314 (2002) · Zbl 1056.16032
[20] Poirier S., Reutenauer C.: Algébre de Hopf de tableaux. Ann. Sci. Math. Québec 19(1), 79–90 (1995) · Zbl 0835.16035
[21] Reutenauer C.: Free Lie Algebras. Oxford University Press, New York (1993) · Zbl 0798.17001
[22] Schocker M.: Lie idempotent algebras. Adv. Math. 175(2), 243–270 (2003) · Zbl 1063.20010
[23] Schocker, M.: Private communication. (2004)
[24] Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences. http://www.research.att.com/\(\sim\)njas/sequences/ · Zbl 1274.11001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.