×

Numerical lower bound shakedown analysis of engineering structures. (English) Zbl 1230.74046

Summary: We propose a numerical method for the computation of shakedown loads of engineering structures subjected to varying thermo-mechanical loading. The method is based on Melan’s lower bound shakedown theorem using the von Mises yield criterion. The resulting nonlinear convex optimization problem is presented in a generalized formulation and then solved by an interior-point algorithm, which is characterized by a problem-tailored solution strategy, particularly suitable for application to large-scale engineering structures.Theoretical and numerical issues of the algorithm are described. It’s efficiency is shown by application to thermo-mechanical problems from power plant engineering. The results are compared to those found in literature as well as to calculations with other optimization codes lancelot, ipopt and ipdca.

MSC:

74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74P10 Optimization of other properties in solid mechanics

Software:

LANCELOT; CG+; Ipopt; LOQO; Mosek
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Mroz, Z.; Weichert, D.; Dorosz, S., Inelastic Behavior of Structures under Variable Loads (1995), Kluwer Academic Publishers
[2] Weichert, D.; Maier, G., Inelastic Analysis of Structures under Variable Repeated Loads (2000), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht
[3] Maier, G.; Pastor, J.; Ponter, A.; Weichert, D., Direct methods of limit and shakedown analysis, (de Borst, R.; Mang, H., Comprehensive Structural Integrity - Fracture of Materials from Nano to Macro. Comprehensive Structural Integrity - Fracture of Materials from Nano to Macro, Numerical and Computational Methods, vol. 3 (2003), Elsevier), 637-684
[4] Weichert, D.; Ponter, A., Limit States of Materials and Structures (2009), Springer: Springer Wien/New York
[5] König, J., Shakedown of Elastic-Plastic Structures (1987), Elsevier: Elsevier Amsterdam · Zbl 0149.22502
[6] Melan, E., Theorie statisch unbestimmter Tragwerke aus ideal-plastischem Baustoff, Sitzungsber Akad Wiss Wien, math-nat Kl, Abt IIa, 145, 195-218 (1936) · JFM 62.1547.01
[7] Melan, E., Zur Plastizität des räumlichen Kontinuums, Ing-Arch, 9, 116-126 (1938) · JFM 64.0840.01
[8] El-Bakry, A.; Tapia, R.; Tsuchiya, T.; Zhang, Y., On the formulation and theory of the Newton interior-point method for nonlinear programming, J. Optim. Theor. Appl., 89, 507-541 (1996) · Zbl 0851.90115
[9] Potra, F.; Wright, S., Interior-point methods, J. Comput. Appl. Math., 124, 281-302 (2000) · Zbl 0967.65078
[10] Forsgren, A.; Gill, P.; Wright, M., Interior methods for nonlinear optimization, SIAM Rev., 44, 525-597 (2002) · Zbl 1028.90060
[11] Wright, M., The interior-point revolution in optimization: history, recent developments and lasting consequences, Bull. Amer. Math. Soc., 42, 39-56 (2004) · Zbl 1114.90153
[12] Vanderbei, R., LOQO: an interior point code for quadratic programming, Optim. Methods Soft., 11-12, 451-484 (1999) · Zbl 0973.90518
[13] Griva, I.; Shanno, D.; Vanderbei, R.; Benson, H., Global convergence analysis of a primal-dual interior-point method for nonlinear programming, Algor. Oper. Res., 3, 12-19 (2008) · Zbl 1277.90148
[14] Byrd, R.; Hribar, M.; Nocedal, J., An interior point algorithm for large-scale nonlinear programming, SIAM J. Optim., 9, 877-900 (2000) · Zbl 0957.65057
[15] Waltz, R.; Morales, J.; Nocedal, J.; Orban, D., An interior algorithm for nonlinear optimization that combines line search and trust region steps, Math. Program., 107, 391-408 (2006) · Zbl 1134.90053
[16] Wächter, A.; Biegler, L., Line-search filter methods for nonlinear programming: motivation and global convergence, SIAM J. Optim., 16, 1-31 (2005) · Zbl 1114.90128
[17] Wächter, A.; Biegler, L., On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., 106, 25-57 (2006) · Zbl 1134.90542
[18] Benson, H.; Shanno, D.; Vanderbei, R., A comparative study of large-scale nonlinear optimization algorithms, (Di Pillo, G.; Murli, A., High performance algorithms and software for nonlinear optimization (2003), Kluwer Academic Publishers B.V.: Kluwer Academic Publishers B.V. Princeton University), 95-127 · Zbl 1066.90138
[19] Morales, J.; Nocedal, J.; Waltz, R.; Lie, G.; Goux, J.-P., Assessing the potential of interior methods for nonlinear optimization, (Biegler, L.; Ghattas, O.; Heinkenschloss, M.; van Bloemen Waander, B., Large-scale PDE-constrained Optimization. Large-scale PDE-constrained Optimization, Lecture Notes in Computational Science and Engineering, vol. 30 (2003), Springer), 167-183 · Zbl 1062.65063
[20] Christiansen, E.; Andersen, K., Computation of collapse states with von Mises type yield condition, Int. J. Numer. Methods Engrg., 46, 1185-1202 (1999) · Zbl 0951.74060
[21] E. Andersen, B. Jensen, J. Jensen, R. Sandvik, U. Worsoe, MOSEK version 6, Technical Report TR-2009-3, MOSEK, 2009.; E. Andersen, B. Jensen, J. Jensen, R. Sandvik, U. Worsoe, MOSEK version 6, Technical Report TR-2009-3, MOSEK, 2009.
[22] Trillat, M.; Pastor, J., Limit analysis and Gurson’s model, Eur. J. Mech. A/Solids, 24, 800-819 (2005) · Zbl 1125.74311
[23] Bisbos, C.; Makrodimopoulos, A.; Pardalos, P., Second-order cone programming approaches to static shakedown analysis in steel plasticity, Optim. Methods Soft., 20, 25-52 (2005) · Zbl 1068.90099
[24] Makrodimopoulos, A.; Martin, C., Lower bound limit analysis of cohesive-frictional materials using second-order cone programming, Int. J. Numer. Methods Engrg., 66, 604-634 (2006) · Zbl 1110.74833
[25] Krabbenhøft, K.; Lyamin, A.; Sloan, S., Formulation and solution of some plasticity problems as conic programs, Int. J. Solids Struct., 44, 1533-1549 (2007) · Zbl 1119.74035
[26] Zouain, N.; Borges, L.; Silveira, J., An algorithm for shakedown analysis with nonlinear yield functions, Comput. Methods Appl. Mech. Engrg., 191, 2463-2481 (2002) · Zbl 1054.74064
[27] Casciaro, R.; Garcea, G., An iterative method for shakedown analysis, Comput. Methods Appl. Mech. Engrg., 191, 5761-5792 (2002) · Zbl 1083.74513
[28] Zhang, X.; Liu, Y.; Yanan, Z.; Cen, Z., Lower bound limit analysis by the symmetric Galerkin boundary element method and the Complex method, Comput. Methods Appl. Mech. Engrg., 191, 1967-1982 (2002) · Zbl 1098.74730
[29] Krabbenhøft, K.; Damkilde, L., A general nonlinear optimization algorithm for lower bound limit analysis, Int. J. Numer. Methods Engrg., 56, 165-184 (2003) · Zbl 1116.74404
[30] Krabbenhøft, K.; Lyamin, A.; Sloan, S.; Wriggers, P., An interior-point algorithm for elastoplasticity, Int. J. Numer. Methods Engrg., 69, 592-626 (2007) · Zbl 1194.74422
[31] Vu, D.; Yan, A.; Nguyen-Dang, H., A primal-dual algorithm for shakedown analysis of structures, Comput. Methods Appl. Mech. Engrg., 193, 4663-4674 (2004) · Zbl 1112.74546
[32] Vu, D.; Staat, M., Analysis of pressure equipment by application of the primal-dual theory of shakedown, Commun. Numer. Methods Engrg., 23, 213-225 (2007) · Zbl 1107.74007
[33] Pastor, F.; Loute, E.; Pastor, J.; Trillat, M., Mixed method and convex optimization for limit analysis of homogeneous Gurson materials: a kinematic approach, Eur. J. Mech. A/Solids, 28, 25-35 (2009) · Zbl 1155.74386
[34] Pastor, F.; Loute, E., Limit analysis decomposition and finite element mixed method, J. Comput. Appl. Math., 234, 2213-2221 (2010) · Zbl 1402.74102
[35] Hachemi, A.; An, L.; Mouhtamid, S.; Tao, P., Large-scale nonlinear programming and lower bound direct method in engineering applications, (An, L.; Tao, P., Modelling, Computation and Optimization in Information Systems and Management Sciences (2004), Hermes Science Publishing: Hermes Science Publishing London), 299-310
[36] F. Akoa, Approches de points intérieurs et de la programmation DC en optimisation non convexe, Ph.D. thesis, Institut National des Sciences Appliquées de Rouen, 2007.; F. Akoa, Approches de points intérieurs et de la programmation DC en optimisation non convexe, Ph.D. thesis, Institut National des Sciences Appliquées de Rouen, 2007.
[37] Akoa, F.; Hachemi, A.; An, L.; Mouhtamid, S.; Tao, P., Application of lower bound direct method to engineering structures, J. Glob. Optim., 37, 609-630 (2007) · Zbl 1149.90118
[38] J.-W. Simon, D. Weichert, An improved interior-point algorithm for large-scale shakedown analysis, in: PAMM - Proc. Appl. Math. Mech., vol. 10, pp. 223-224.; J.-W. Simon, D. Weichert, An improved interior-point algorithm for large-scale shakedown analysis, in: PAMM - Proc. Appl. Math. Mech., vol. 10, pp. 223-224.
[39] J.-W. Simon, D. Weichert, Interior-point method for the computation of shakedown loads for engineering systems, in: ASME Conf. Proc. ESDA2010, vol. 4, pp. 253-262.; J.-W. Simon, D. Weichert, Interior-point method for the computation of shakedown loads for engineering systems, in: ASME Conf. Proc. ESDA2010, vol. 4, pp. 253-262.
[40] J.-W. Simon, M. Chen, D. Weichert, Shakedown analysis combined with the problem of heat conduction, in: ASME Conf. Proc. PVP2010, vol 2, pp. 133-142.; J.-W. Simon, M. Chen, D. Weichert, Shakedown analysis combined with the problem of heat conduction, in: ASME Conf. Proc. PVP2010, vol 2, pp. 133-142.
[41] Conn, A.; Gould, N.; Toint, P., LANCELOT: a Fortran package for large-scale nonlinear optimization (Release A), Springer Series in Computational Mathematics, vol. 17 (1992), Springer: Springer Heidelberg/New York · Zbl 0761.90087
[42] Groß-Weege, J., On the numerical assessment of the safety factor of elastic-plastic structures under variable loading, Int. J. Mech. Sci., 39, 417-433 (1997) · Zbl 0891.73051
[43] Kuhn, H.; Tucker, A., Nonlinear programming, (Neyman, J., Second Berkeley Symposium on Mathematical Statistics and Probability (1950), University of California Press), 481-492
[44] Saunders, M., Cholesky-based methods for sparse least squares: the benefits of regularization, (Adams, L.; Nazareth, J., Linear and nonlinear conjugate gradient-related methods (1996), SIAM), 92-100 · Zbl 0865.65022
[45] N. Maratos, Exact penalty function algorithms for finite dimensional and control opimization problems, Ph.D. thesis, University of London, London, UK, 1978.; N. Maratos, Exact penalty function algorithms for finite dimensional and control opimization problems, Ph.D. thesis, University of London, London, UK, 1978.
[46] Belytschko, T., Plane stress shakedown analysis by finite elements, Int. J. Mech. Sci., 14, 619-625 (1972)
[47] Corradi, L.; Zavelani, A., A linear programming approach to shakedown analysis of structures, Comput. Methods Appl. Mech. Engrg., 3, 37-53 (1974)
[48] Carvelli, V.; Cen, Z.; Liu, Y.; Maier, G., Shakedown analysis of defective pressure vessels by a kinematic approach, Arch. Appl. Mech., 69, 751-764 (1999) · Zbl 0969.74582
[49] Zhang, T.; Raad, L., An eigen-mode method in kinematic shakedown analysis, Int. J. Plast., 18, 71-90 (2002) · Zbl 1035.74011
[50] Liu, Y.; Zhang, X.; Cen, Z., Lower bound shakedown analysis by the symmetric Galerkin boundary element method, Int. J. Plast., 21, 21-42 (2005) · Zbl 1112.74552
[51] Garcea, G.; Armentano, G.; Petrolo, S.; Casciaro, R., Finite element shakedown analysis of two-dimensional structures, Int. J. Numer. Methods Engrg., 63, 1174-1202 (2005) · Zbl 1084.74052
[52] Krabbenhøft, K.; Lyamin, A.; Sloan, S., Bounds to shakedown loads for a class of deviatoric plasticity models, Comput. Mech., 39, 879-888 (2007) · Zbl 1160.74008
[53] Chen, S.; Liu, Y.; Cen, Z., Lower bound shakedown analysis by using the element free Galerkin method and non-linear programming, Comput. Methods Appl. Mech. Engrg., 197, 3911-3921 (2008) · Zbl 1194.74514
[54] Tran, T.; Liu, G.; Nguyen-Xuan, H.; Nguyen-Thoi, T., An edge-based smoothed finite element method for primal-dual shakedown analysis of structures, Int. J. Numer. Methods Engrg., 82, 917-938 (2010) · Zbl 1188.74073
[55] Nguyen-Thoi, T.; Vu-Do, H.; Rabczuk, T.; Nguyen-Xuan, H., A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes, Comput. Methods Appl. Mech. Engrg., 199, 3005-3027 (2010) · Zbl 1231.74432
[56] F. Schwabe, Einspieluntersuchungen von Verbundwerkstoffen mit periodischer Mikrostruktur, Ph.D. thesis, Institut für Allgemeine Mechanik, RWTH Aachen University, Germany, 2000.; F. Schwabe, Einspieluntersuchungen von Verbundwerkstoffen mit periodischer Mikrostruktur, Ph.D. thesis, Institut für Allgemeine Mechanik, RWTH Aachen University, Germany, 2000.
[57] Chen, H.; Ponter, A., Shakedown and limit analyses for 3-D structures using the linear matching method, Int. J. Press Vessels Piping, 78, 443-451 (2001)
[58] G. Zhang, Einspielen und dessen numerische Behandlung von Flächentragwerken aus ideal plastischem bzw kinematisch verfestigendem Material, Ph.D. thesis, Institut für Mechanik, University Hannover, 1992.; G. Zhang, Einspielen und dessen numerische Behandlung von Flächentragwerken aus ideal plastischem bzw kinematisch verfestigendem Material, Ph.D. thesis, Institut für Mechanik, University Hannover, 1992.
[59] Howland, R., On the stresses in the neighbourhood of a circular hole in a strip under tension, Phil. Trans. R Soc. Lond., A229, 49-86 (1930) · JFM 56.1236.04
[60] S. Mouhtamid, Anwendung direkter Methoden zur industriellen Berechnung von Grenzlasten mechanischer Komponenten, Ph.D. thesis, Institut für Allgemeine Mechanik, RWTH Aachen University, Germany, 2007.; S. Mouhtamid, Anwendung direkter Methoden zur industriellen Berechnung von Grenzlasten mechanischer Komponenten, Ph.D. thesis, Institut für Allgemeine Mechanik, RWTH Aachen University, Germany, 2007.
[61] AD-Merkblatt B9, Verband der Technischen Überwachungs-Vereine e.V., Carl Heymanns Verlag GmbH, 1995.; AD-Merkblatt B9, Verband der Technischen Überwachungs-Vereine e.V., Carl Heymanns Verlag GmbH, 1995.
[62] Dampfkessel-Bestimmungen TRD 301, Verband der Technischen Überwachungs-Vereine e.V., Carl Heymanns Verlag GmbH, 1997.; Dampfkessel-Bestimmungen TRD 301, Verband der Technischen Überwachungs-Vereine e.V., Carl Heymanns Verlag GmbH, 1997.
[63] W. Wagner, Festigkeitsberechnungen im Apparate-und Rohrleitungsbau, Vogel Fachbuch, Kamprath-Reihe, 1995.; W. Wagner, Festigkeitsberechnungen im Apparate-und Rohrleitungsbau, Vogel Fachbuch, Kamprath-Reihe, 1995.
[64] G. Meier, Numerische und experimentelle Shakedown-Untersuchungen an Druckbehälterstutzen, Ph.D. thesis, Lehrstuhl für Apparate- und Anlagenbau, Experimentelle Spannungsanalyse, TU München, 2005.; G. Meier, Numerische und experimentelle Shakedown-Untersuchungen an Druckbehälterstutzen, Ph.D. thesis, Lehrstuhl für Apparate- und Anlagenbau, Experimentelle Spannungsanalyse, TU München, 2005.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.