×

An effective computational tool for parametric studies and identification problems in materials mechanics. (English) Zbl 1334.74095

Summary: Parametric studies and identification problems require to perform repeated analyses, where only a few input parameters are varied among those defining the problem of interest, often associated to complex numerical simulations. In fact, physical phenomena relevant to several practical applications involve coupled material and geometry nonlinearities. In these situations, accurate but expensive computations, usually carried out by the finite element method, may be replaced by numerical procedures based on proper orthogonal decomposition combined with radial basis function interpolation. Besides drastically reducing computing times and costs, this approach is capable of retaining the essential features of the considered system responses while filtering most disturbances. These features are illustrated in this paper with specific reference to some elastic-plastic problems. The presented results can however be easily extended to other meaningful engineering situations.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74A99 Generalities, axiomatics, foundations of continuum mechanics of solids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bui HD (1994) Inverse problems in the mechanics of materials: an introduction. CRC Press, Boca Raton
[2] Kleiber M, Antúnez H, Hien TD, Kowalczyk P (1997) Parameter sensitivity in non-linear mechanics. Theory and finite element computations. Wiley, Chichster
[3] Mroz, Z, Stavroulakis, G (eds) (2004) Parameter identification of materials and structures. Springer, Berlin
[4] Stavroulakis G, Bolzon G, Waszczyszyn Z, Ziemianski L (2003) Inverse analysis. In: Karihaloo B, Ritchie RO, Milne I (eds in chief) Comprehensive structural integrity. Numerical and computational methods, vol 3, chap 13. Elsevier, Amsterdam, pp 685–718
[5] Maier G, Bolzon G, Buljak V, Garbowski T, Miller B (2010) Synergic combinations of computational methods and experiments for structural diagnoses. In: Kuczma M, Wilmanski K (eds) Computer methods in mechanics. Lectures of the CMM 2009. Advanced structured materials series, vol 1. Springer, Berlin, pp 453–476
[6] Bolzon G, Cocchetti G (2003) Direct assessment of structural resistance against pressurized fracture. Int J Num Anal Methods Geomech 27: 353–378 · Zbl 1047.74523 · doi:10.1002/nag.276
[7] Calvetti F, di Prisco C, Nova R (2004) Experimental and numerical analysis of soil-pipe interaction. J Geotech Geoenviron Eng 130: 1292–1299 · doi:10.1061/(ASCE)1090-0241(2004)130:12(1292)
[8] Jang J-I, Choi Y, Lee J-S, Lee Y-H, Kwon D, Gao M, Kania R (2005) Application of instrumented indentation technique for enhanced fitness-for-service assessment of pipeline crack. Int J Fract 131: 15–34 · doi:10.1007/s10704-004-1690-8
[9] Bolzon G (2010) Collapse mechanisms at the foundation interface of geometrically similar concrete gravity dams. Eng Struct 32: 1304–1311 · doi:10.1016/j.engstruct.2010.01.008
[10] Collison A, Wade S, Griffiths J, Dehn M (2000) Modelling the impact of predicted climate change on landslide frequency and magnitude in SE England. Eng Geol 55: 205–218 · doi:10.1016/S0013-7952(99)00121-0
[11] Buczkowski R, Kleiber M (2006) Elasto-plastic statistical model of strongly anisotropic rough surfaces for finite element 3D-contact analysis. Comput Methods Appl Mech Eng 195: 5141–5161 · Zbl 1142.74030 · doi:10.1016/j.cma.2005.11.014
[12] Ardito R, Cocchetti G (2006) Statistical approach to damage diagnosis of concrete dams by radar monitoring: formulation and a pseudo-experimental test. Eng Sruct 28: 2036–2045 · doi:10.1016/j.engstruct.2006.04.001
[13] De Sortis A, Paoliani P (2007) Statistical analysis and structural identification in concrete dam monitoring. Eng Struct 29: 110–120 · doi:10.1016/j.engstruct.2006.04.022
[14] Ardito R, Maier G, Massalongo G (2008) Diagnostics analysis of concrete dams based on seasonal hydrostatic loading. Eng Struct 30: 3176–3185 · doi:10.1016/j.engstruct.2008.04.008
[15] Valdebenito MA, Schuëller GI (2010) Design of maintenance schedules for fatigue-prone metallic components using reliability-based optimization. Comput Methods Appl Mech Eng 199: 2305–2318 · Zbl 1231.74355 · doi:10.1016/j.cma.2010.03.028
[16] Gao W, Song C, Tin-Loi F (2010) Probabilistic interval analysis for structures with uncertainty. Struct Saf 32: 191–199 · doi:10.1016/j.strusafe.2010.01.002
[17] Kaminski M (2010) A generalized stochastic perturbation technique for plasticity problems. Comput Mech 45: 349–361 · Zbl 1362.74034 · doi:10.1007/s00466-009-0455-7
[18] Bolzon G, Fedele R, Maier G (2002) Parameter identification of a cohesive crack model by Kalman filter. Comput Methods Appl Mech Eng 191: 2847–2871 · Zbl 1131.74308 · doi:10.1016/S0045-7825(02)00223-2
[19] Marcuzzi F (2009) Space and time localization for the estimation of distributed parameters in a finite element model. Comput Methods Appl Mech Eng 198: 3020–3025 · Zbl 1229.74135 · doi:10.1016/j.cma.2009.05.007
[20] Aoki S, Amaya K, Sahashi M, Nakamura T (1997) Identification of Gurson’s material constants by using Kalman filter. Comput Mech 19: 501–506 · Zbl 1031.74531 · doi:10.1007/s004660050199
[21] Corigliano A, Mariani S, Orsatti B (2000) Identification of Gurson–Tvergaard material model parameters via Kalman filtering, technique: I Theory. Int J Fract 104: 349–373 · doi:10.1023/A:1007602106711
[22] Nakamura T, Wang T, Sampath S (2000) Determination of properties of graded materials by inverse analysis and instrumented indentation. Acta Mater 48: 4293–4306 · doi:10.1016/S1359-6454(00)00217-2
[23] Bocciarelli M, Bolzon G, Maier G (2008) A constitutive model of metal–ceramic functionally graded material behavior: formulation and parameter identification. Comput Mater Sci 43: 16–26 · doi:10.1016/j.commatsci.2007.07.047
[24] Bocciarelli M, Bolzon G (2009) Indentation and imprint mapping for the identification of interface properties in film-substrate systems. Int J Fract 155: 1–17 · doi:10.1007/s10704-009-9314-y
[25] Ageno M, Bolzon G, Maier G (2009) Mechanical characterisation of free-standing elastoplastic foils by means of membranometric measurements and inverse analysis. Struct Multidiscip Optim 38: 229–243 · Zbl 1274.74009 · doi:10.1007/s00158-008-0294-8
[26] Druault P, Guibert P, Alizon F (2005) Use of proper orthogonal decomposition for time interpolation from PIV data. Application to the cycle-to-cycle variation analysis of in-cylinder engine flows. Exp Fluids 39: 1009–1023 · doi:10.1007/s00348-005-0035-3
[27] Deparis S, Rozza G (2009) Reduced basis method for multi-parameter-dependent steady Navier–Stokes equations: Applications to natural convection in a cavity. J Comput Phys 228: 4359–4378 · Zbl 1260.76024 · doi:10.1016/j.jcp.2009.03.008
[28] Huynh DBP, Knezevic DJ, Chen Y, Hesthaven JS, Patera AT (2010) A natural-norm successive constraint method for inf-sup lower bounds. Comput Methods Appl Mech Eng 199: 1963–1975 · Zbl 1231.76208 · doi:10.1016/j.cma.2010.02.011
[29] Niroomandi S, Alfaro I, Cueto E, Chinesta F (2008) Real-time deformable models of non-linear tissues by model reduction techniques. Comput Methods Progr Biomed 91: 223–231 · Zbl 05517909 · doi:10.1016/j.cmpb.2008.04.008
[30] Ostrowski Z, Bialecki RA, Kassab AJ (2005) Estimation of constant thermal conductivity by use of proper orthogonal decomposition. Comput Mech 37: 52–59 · Zbl 1158.80308 · doi:10.1007/s00466-005-0697-y
[31] Ostrowski Z, Bialecki RA, Kassab AJ (2008) Solving inverse heat conduction problems using trained POD-RBF network. Inv Problems Sci Eng 16: 705–714 · Zbl 1149.92331 · doi:10.1080/17415970802083276
[32] Katayama T (2005) Subspace methods for system identification. Springer, Berlin · Zbl 1118.93002
[33] Chatterjee A (2000) An introduction to the proper orthogonal decomposition. Curr Sci 78: 808–817
[34] Ly HV, Tran HT (2001) Modeling and control of physical processes using proper orthogonal decomposition. Math Comput Model 33: 223–236 · Zbl 0966.93018 · doi:10.1016/S0895-7177(00)00240-5
[35] Liang YC, Lee HP, Lim SP, Lin WZ, Lee KH, Wu CG (2002) Proper orthogonal decomposition and its applications. Part I: theory. J Sound Vib 252: 527–544 · Zbl 1237.65040 · doi:10.1006/jsvi.2001.4041
[36] Buhmann MD (2003) Radial basis functions. Cambridge University Press, Cambridge · Zbl 1038.41001
[37] Levasseur S, Malecot Y, Boulon M, Flavigny E (2009) Statistical inverse analysis based on genetic algorithm and principal component analysis: method and developments using synthetic data. Int J Numer Anal Meth Geomech 33: 1485–1511 · Zbl 1168.74357 · doi:10.1002/nag.776
[38] Bolzon G, Buljak V (2010) An indentation based technique to detect in-depth residual stress profiles induced by surface treatment of metal components. Fat Fract Eng Mat Struct 34: 97–107 · doi:10.1111/j.1460-2695.2010.01497.x
[39] Bolzon G, Maier G, Panico M (2004) Material model calibration by indentation, imprint mapping and inverse analysis. Int J Solids Struct 41: 2957–2975 · Zbl 1119.74408 · doi:10.1016/j.ijsolstr.2004.01.025
[40] Bocciarelli M, Bolzon G, Maier G (2005) Parameter identification in anisotropic elastoplasticity by indentation and imprint mapping. Mech Mater 37: 855–868 · doi:10.1016/j.mechmat.2004.09.001
[41] Maier G, Bocciarelli M, Bolzon G, Fedele R (2006) On inverse analysis in fracture mechanics. Int J Fract 138: 47–73 · Zbl 1112.74057 · doi:10.1007/s10704-006-7153-7
[42] Bolzon G, Bocciarelli M, Chiarullo EJ (2008) Mechanical characterization of materials by micro-indentation and AFM scanning. In: Bhushan B, Fuchs H, Yamada H (eds) Applied scanning probe methods, vol 11–13. Springer, Heidelberg, pp 85–120
[43] Bolzon G, Chiarullo EJ, Egizabal P, Estournes C (2010) Constitutive modelling and mechanical characterization of aluminium-based metal matrix composites produced by spark plasma sintering. Mech Mater 42: 548–558 · doi:10.1016/j.mechmat.2010.03.001
[44] Bhushan B (1999) Handbook of micro/nano tribology. CRC Press, Boca Raton
[45] ABAQUS/Standard: (2005) Theory and user’s manuals, release 6.5-1. HKS Inc., Pawtucket
[46] ISO 6508-1&2 (2005) Metallic materials–Rockwell hardness test
[47] The Math Works Inc. (2004) Matlab user’s guide and optimization toolbox, release 6.13, Natick, MA, USA
[48] Mulford R, Asaro RJ, Sebring RJ (2004) Spherical indentation of ductile power law materials. J Mater Res 19: 2641–2646 · doi:10.1557/JMR.2004.0363
[49] Criesfield MA (1997) Non-linear finite element analysis of solids and structures, vol 2. Wiley, Chichester
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.