×

Simulation of polycrystal deformation with grain and grain boundary effects. (English) Zbl 1426.74133

Summary: Modeling the strengthening effect of grain boundaries (Hall-Petch effect) in metallic polycrystals in a physically consistent way, and without invoking arbitrary length scales, is a long-standing, unsolved problem. A two-scale method to treat predictively the interactions of large numbers of dislocations with grain boundaries has been developed, implemented, and tested. At the first scale, a standard grain-scale simulation (GSS) based on a finite element (FE) formulation makes use of recently proposed dislocation-density-based single-crystal constitutive equations (“SCCE-D”) to determine local stresses, strains, and slip magnitudes. At the second scale, a novel meso-scale simulation (MSS) redistributes the mobile part of the dislocation density within grains consistent with the plastic strain, computes the associated inter-dislocation back stress, and enforces local slip transmission criteria at grain boundaries.
Compared with a standard crystal plasticity finite element (FE) model (CP-FEM), the two-scale model required only 5% more CPU time, making it suitable for practical material design. The model confers new capabilities as follows:
(1)
The two-scale method reproduced the dislocation densities predicted by analytical solutions of single pile-ups.
(2)
Two-scale simulations of 2D and 3D arrays of regular grains predicted Hall-Petch slopes for iron of \(1.2 \pm 0.3 MN/m^{3/2}\) and \(1.5 \pm 0.3 MN/m^{3/2}\), in agreement with a measured slope of \(0.9 \pm 0.1 MN/m^{3/2}\).
(3)
The tensile stress-strain response of coarse-grained Fe multi-crystals (9–39 grains) was predicted 2–4 times more accurately by the two-scale model as compared with CP-FEM or Taylor-type texture models.
(4)
The lattice curvature of a deformed Fe-3% Si columnar multi-crystal was predicted and measured. The measured maximum lattice curvature near grain boundaries agreed with model predictions within the experimental scatter.

MSC:

74F15 Electromagnetic effects in solid mechanics
74E20 Granularity
74A60 Micromechanical theories
74S05 Finite element methods applied to problems in solid mechanics

Software:

ABAQUS/Standard
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abson, D. J.; Jonas, J. J.: Hall – petch relation and high-temperature subgrains, Metal. sci. J. 4, 24-28 (1970)
[2] Al-Rub, R. K. Abu; Voyiadijus, G. Z.: A physically based gradient plasticity theory, Int. J. Plast. 22, 654-684 (2006) · Zbl 1190.74003 · doi:10.1016/j.ijplas.2005.04.010
[3] Adams, B. L.; Field, D. P.: Measurement and representation of grain boundary texture, Metall. trans. 23A, 2501-2513 (1992)
[4] Adams, M. A.; Roberts, A. C.; Smallman, R. E.: Yield and fracture in polycrystalline niobium, Acta met. 8, 328 (1960)
[5] Allen, B.; Moore, A.: The metallurgy of beryllium, (1963)
[6] Anand, L.; Gurland, J.: Effect of internal boundaries on the yield strengths of spheroidized steels, Met. trans. A 7, 191 (1976)
[7] Anderson, P. M.; Shen, Y.: Transmission of a screw dislocation across a coherent, slipping interface, Acta mater. 54, 3941-3951 (2006)
[8] Armstrong, R. W.; Codd, I.; Douthwaite, R. M.; Petch, N. J.: The plastic deformation of polycrystalline aggregates, Philos. mag. 7, 45 (1962)
[9] Arsenlis, A.; Parks, D. M.; Becker, R.; Bulatov, V. V.: On the evolution of crystallographic dislocation density in non-homogeneously deforming crystals, J. mech. Phys. solids 52, 1213 (2004) · Zbl 1079.74523 · doi:10.1016/j.jmps.2003.12.007
[10] Asaro, R. J.: Geometrical effects in the inhomogeneous deformation of ductile single crystals, Acta met. 27, 445 (1979)
[11] Asaro, R. J.: Micromechanics of crystals and polycrystals, Adv. appl. Mech. 23, 1-115 (1983)
[12] Asaro, R. J.; Needleman, A.: Texture development and strain hardening in rate dependent polycrystals, Acta metall. 33, 923-953 (1985)
[13] Ashby, M. F.: Mechanical effects of a dispersion of a second phase, Phil. mag. 21, 399 (1970) · Zbl 0206.14602
[14] Balint, D. S.; Deshpande, V. S.; Needleman, A.; Van Der Giessen, E.: A discrete dislocation plasticity analysis of grain size strengthening, Mater. sci. Eng. A, 186-190 (2005) · Zbl 1232.74015
[15] Balint, D. S.; Deshpande, V. S.; Needleman, A.; Van Der Giessen, E.: Discrete dislocation plasticity analysis of the grain size dependence of the flow strength of polycrystals, Int. J. Plast. 24, 2149-2172 (2008) · Zbl 1232.74015 · doi:10.1016/j.ijplas.2007.08.005
[16] Beaudoin, A. J.; Dawson, P. R.; Mathur, K. K.; Kocks, U. F.; Korzekwa, D. A.: Application of polycrystal plasticity to sheet forming, Comput. methods appl. Mech. eng. 117, 49-70 (1994) · Zbl 0847.73017 · doi:10.1016/0045-7825(94)90076-0
[17] Becker, R.; Panchanadeeswaran, S.: Effects of grain interactions on deformation and local texture in polycrystals, Acta metall. Mater. 43, No. 7, 2701-2719 (1995)
[18] Biner, S. B.; Morris, J. R.: The effects of grain size and dislocation source density on the strengthening behaviour of polycrystals, a two dimensional discrete dislocation simulation, Phil. mag. 83, 3677-3690 (2003)
[19] Bronkhorst, C. A.; Kalidinidi, S. R.; Anand, L.: Polycrystalline plasticity and the evolution of crystallographic texture in FCC metals, Philos. trans. Roy. soc. London A 341, No. 443 (1992)
[20] Canova, G. R.; Kocks, U. F.; Tome, C. N.; Jonas, J. J.: The yield surface of textured polycrystals, J. mech. Phys. solids 33, 371-397 (1985) · Zbl 0572.73047 · doi:10.1016/0022-5096(85)90035-3
[21] Carreker, R. P.: Tensile deformation of silver as a function of temperature, strain rate, and grain size, Trans. AIME 209, 113 (1957)
[22] Carreker, R. P.; Hibbard, W. R.: Temperature, strain rate, and grain size, Trans. AIME 209, 1157 (1957)
[23] Chang, P. H.; Preban, A. G.: The effect of ferrite grain size and martensite volume fraction on the tensile properties of dual phase steel, Acta metall. 33, No. 5, 897-903 (1985)
[24] Choi, S. -H.; Kim, D. H.; Park, S. S.; You, B. S.: Simulation of stress concentration in mg alloys using the crystal plasticity finite element method, Acta mater. 58, 320-329 (2010)
[25] Christian, J. W.; Vitek, V.: Dislocations and stacking faults, Rep. prog. Phys. 33, 307 (1970)
[26] Conrad, H.: Electron microscopy and strength of crystals, (1961)
[27] Conrad, H.: Ultrafine-grain metals, (1970)
[28] Cottrell, A. H.: Dislocations and plastic flow in crystals, (1953) · Zbl 0052.23707
[29] Dawson, P. R.; Mika, D. P.; Barton, N. R.: Finite element modeling of lattice misorientations in aluminum polycrystals, Scripta mater. 47, No. 10, 713-717 (2002)
[30] Dawson, P. R.; Macewen, S. R.; Wu, P. D.: Advances in sheet metal forming analyses, dealing with mechanical anisotropy from crystallographic texture, Int. mater. Rev. 48, No. 2, 86-122 (2003)
[31] De Koning, M.; Kurtz, R. J.; Bulatov, V. V.; Henager, C. H.; Hoagland, R. G.; Cai, W.; Nomura, M.: Modeling of dislocation-grain boundary interactions in FCC metals, J. nucl. Mater. 323, 281-289 (2003)
[32] De Messemaeker, J.V.B., Van Humbeek, J., 2004. On the strength of boundaries in submicron IF steel. Mater. Lett. 58, 3782 – 3786.
[33] Delannay, L.; Melchior, M. A.; Signorelli, J. W.; Remacle, J. -F.; Kuwabara, T.: Influence of grain shape on the planar anisotropy of rolled steel sheets – evaluation of three models, Comput. mater. Sci. 45, No. 3, 739-743 (2009)
[34] Dieter, G. E.: Mechanical metallurgy, (1976)
[35] Duesbery, M. S.; Richardson, G. Y.: The dislocation core in crystalline materials, CRC crit. Rev. solid state mater. Sci. 17, 1 (1991)
[36] El-Dasher, B. S.; Adams, B. L.; Rollett, A. D.: Viewpoint, experimental recovery of geometrically necessary dislocation density in polycrystals, Scripta mater. 48, 141 (2003)
[37] Esheby, J. D.; Frank, F. C.; Nabarro, F. R. N.: The equilibrium of linear arrays of dislocations, Phil. mag. 42, 351 (1951) · Zbl 0042.22704
[38] Evers, L. P.; Parks, D. M.; Brekelmans, W. A. M.; Geers, M. G. D.: Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation, J. mech. Phys. solids 50, No. 11, 2403-2424 (2002) · Zbl 1100.74531 · doi:10.1016/S0022-5096(02)00032-7
[39] Evers, L. P.; Brekelmans, W. A. M.; Geers, M. G. D.: Non-local crystal plasticity model with intrinsic SSD and GND effects, J. mech. Phys. solids 52, 2379-2401 (2004) · Zbl 1115.74313 · doi:10.1016/j.jmps.2004.03.007
[40] Feaugas, X.; Haddou, H.: On the origin of the tensile flow stress in the stainless steel AISI 316L at 300K, back stress and effective stress, Acta mater. 47, 3617 (1999)
[41] Feaugas, X.; Haddou, H.: Grain-size effects on tensile behavior of nickel and AISI 316L stainless steel, Met. trans. A 34, 2329 (2003)
[42] Feltham, P.; Meakin, J. D.: On the mechanism of work hardening in face-centred cubic metals, with special references to polycrystalline copper, Philos. mag. 2, 105 (1957)
[43] Fleck, N. A.; Hutchinson, J. W.: Strain gradient plasticity, Adv. appl. Mech. 33, 295 (1997) · Zbl 0894.73031
[44] Fleck, N. A.; Muller, G. M.; Ashby, M. F.; Hutchinson, J. W.: Strain gradient plasticity, theory and experiment, Acta metall. Mater. 42, 475 (1994)
[45] Gao, H.; Huang, Y.; Nix, W. D.; Hutchinson, J. W.: Mechanism-based strain gradient plasticity I: Theory, J. mech. Phys. solids 47, 1239-1263 (1999) · Zbl 0982.74013 · doi:10.1016/S0022-5096(98)00103-3
[46] Grabski, M. W.; Wyrzylowski, J. W.: The effect of the spreading of grain boundary dislocations on the tensile behavior of a fine-grained austenitic steel at high temperatures, Mater. sci. Eng. 44, No. 2, 229-237 (1980)
[47] Groma, I.: Link between the microscopic and mesoscopic length-scale description of the collective behavior of dislocations, Phys. rev. B 56, No. 10, 5807-5813 (1997)
[48] Gubicza, J.; Chinh, N. Q.; Lábár, J. L.; Dobatkin, S.; Hegedüs, Z.; Langdon, T. G.: Correlation between microstructure and mechanical properties of severely deformed metals, J. alloys compd. 483, 271-274 (2009)
[49] Gurtin, M. E.: On the plasticity of single crystals, free energy, microforces, plastic strain gradients, J. mech. Phys. solids, No. 48, 989 (2000) · Zbl 0988.74021 · doi:10.1016/S0022-5096(99)00059-9
[50] Gurtin, M. E.: A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations, J. mech. Phys. solids, No. 50, 5 (2002) · Zbl 1043.74007 · doi:10.1016/S0022-5096(01)00104-1
[51] Hall, E. O.: The deformation and ageing of mild steel, Proc. roy. Soc. London 64, 747 (1951)
[52] Hartley, C. S.: A method for linking thermally activated dislocation mechanisms of yielding with continuum plasticity theory, Phil. mag. 83, 3783 (2003)
[53] Hauser, F. E.; Landon, P. R.; Dorn, J. E.: Fracture of magnesium alloys at low temperature, Trans. AIME 206, 589 (1956)
[54] Hibbit, K.S.I., 2005. ABAQUS/Standard User’s Manual.
[55] Hill, R.; Rice, J. R.: Constitutive analysis of elastic plastic crystals at arbitrary strain, J. mech. Phys. solids 20, No. 401 (1972) · Zbl 0254.73031 · doi:10.1016/0022-5096(72)90017-8
[56] Hirth, J. P.: Influence of grain boundaries on mechanical properties, Met. trans. 3, 3047 (1972)
[57] Hirth, J. P.; Lothe, J.: Theory of dislocations, (1969) · Zbl 0213.28105
[58] Hoagland, R. G.; Kurtz, R. J.: The relation between grain-boundary structure and sliding resistance, Philos. mag. 82, No. 6, 1073-1092 (2002)
[59] Hoagland, R. G.; Mitchell, T. E.; Hirth, J. P.; Kung, H.: On the strengthening effects of interfaces in multilayer fcc metallic composites, Philos. mag. 82, No. 4, 643-664 (2002)
[60] Hoagland, R. G.; Kurtz, R. J.; Jr., C. H. Henager: Slip resistance of interfaces and the strength of metallic multilayer composites, Scripta mater. 50, 775-779 (2004)
[61] Huang, Y.; Gao, H.; Nix, W. D.; Hutchinson, J. W.: Mechanism-based strain gradient plasticity II, Anal. J. Mech. phys. Solids 48, 99-128 (2000) · Zbl 0990.74016 · doi:10.1016/S0022-5096(99)00022-8
[62] Hull, D.: Effect of grain size and temperature on slip twinning and fracture in 3% silicon iron, Acta met. 9, 191-204 (1975)
[63] Hutchinson, J. W.: Bounds and self-consistent estimates for creep of polycrystalline materials, Proc. roy. Soc. London 348, 1465-1469 (1976) · Zbl 0319.73059 · doi:10.1098/rspa.1976.0027
[64] Johnson, A. A.: The effect of grain size on the tensile properties of high-purity molybdenum at room temperature, Philos. mag. 4, 194 (1959)
[65] Kalidindi, S. R.; Bronkshorst, C. A.; Anand, L. J.: Crystallographic texture evolution in bulk deformation processing of FCC metals, J. mech. Phys. solids 40, No. 537 (1992)
[66] Kassner, M. E.: A case for Taylor hardening during primary and steady-state creep in aluminium and type 304 stainless steel, J. mater. Sci. 25, 1997-2003 (1990)
[67] Keeler, J. H.: The tensile characteristics of unalloyed zirconium at low and moderate temperatures, Trans. AIME 47, 157 (1955)
[68] Keh, A. S.: Electron microscopy and strength of crystals, (1961)
[69] Kocks, U. F.: Comments on yield strength of metals as a function of grain size, Acta metall. 7, 131 (1959)
[70] Kocks, U. F.: The relation between polycrystal deformation and single crystal deformation, Metall. trans. 1, 1121-1143 (1970)
[71] Kocks, U. F.: Laws for work-hardening and low-temperature creep, J. eng. Mater. tech., ASMEH 98, 76 (1976)
[72] Koo, R. C.: Grain-size effects on the deformation of tantalum at low temperatures, J. less common met. 4, No. 2, 138-144 (1962)
[73] Kröner, E.: Zur plastichen verformung des vielkristalls, Acta metall. 9, No. 155 (1961)
[74] Lee, E. H.: Elastic – plastic deformation at finite strains, J. appl. Mech. 36, No. 1 (1969) · Zbl 0179.55603 · doi:10.1115/1.3564580
[75] Lee, M. G.; Lim, H.; Adams, B. L.; Hirth, J. P.; Wagoner, R. H.: A dislocation density-based single crystal constitutive equation, Int. J. Plast. 26, 925-938 (2010) · Zbl 1426.74078
[76] Lefebvre, S.; Devincre, B.; Hoc, T.: Simulation of the Hall – petch effect in ultra-fine grained copper, Mater. sci. Eng. A, 150-153 (2005)
[77] Lefebvre, S.; Devincre, B.; Hoc, T.: Yield stress strengthening in ultrafine-grained metals, A two dimensional simulation of dislocation dynamics, J. mech. Phys. solids 55, 788-802 (2007) · Zbl 1162.74421 · doi:10.1016/j.jmps.2006.10.002
[78] Leibfried, G.: Verteilung von versetzungen im statischen gleichgewicht, Z. phys. 130, 214 (1951) · Zbl 0054.09203
[79] Li, J. C. M.: A dislocation mechanism of transient creep, Acta metall. 11, 1269 (1963)
[80] Li, J. C. M.; Chou, Y. T.: The role of dislocations in the flow stress-grain size relationship, Met. trans. 1, 1145 (1970)
[81] Li, Z.; Hou, C.; Huang, M.; Ouyang, C.: Strengthening mechanism in micro-polycrystals with penetrable grain boundaries by discrete dislocation dynamics simulation and Hall – petch effect, Comput. mater. Sci. 46, 1124-1134 (2009)
[82] Lim, H., Lee, M.G., Kim, J.H., Hirth, J. P., Adams, B.L., Wagoner, R.H., 2010. Prediction of polycrystal deformation with a novel multi-scale approach. In: 1st Conf. Adv. Interaction and Multiscale Mech., AIMM’10.
[83] Lindley, F. C.; Smallman, R. E.: The determination of the yield stress parameters Ky and \(\sigma i\), by grain-size and extrapolation methods, Acta metall. 11, 626 (1963)
[84] Livingston, J. D.; Chalmers, B.: Multiple slip in bi-crystal deformation, Acta metall. 5, 322 (1957)
[85] Ma, A.; Roters, F.; Raabe, D.: Studying the effect of grain boundaries in dislocation density based crystal-plasticity finite element simulations, Int. J. Solid struct. 43, 7287-7303 (2006) · Zbl 1204.74038 · doi:10.1016/j.ijsolstr.2006.07.006
[86] Marcinkowski, M. J.; Lipsitt, H. A.: The plastic deformation of chromium at low tempeartures, Acta. met. 10, 95 (1962)
[87] Meieran, E. S.; Thomas, D. A.: Structure of drawn and annealed tungsten wire, Trans. AIME 233, 937 (1965)
[88] Meyers, M. A.; Ashworth, E.: A model for the effect of grain size on the yield stress of metals, Phil. mag. A 46, No. 5, 737-759 (1982)
[89] Meyers, M. A.; Chawla, K. K.: Mechanical behavior of materials, (1998) · Zbl 1280.74002
[90] Molinari, A.; Canova, G. R.; Ahzi, S.: A self consistent approach of the large deformation polycrystal viscoplasticity, Acta metall. 35, 2983-2994 (1987)
[91] Nembach, E.: The dependence of the Hall – petch slope on the (’-precipitate dispersion of polycrystals of a nickel-base superalloy, Scr. metall. Mater. 24, No. 4, 787-792 (1990)
[92] Nix, W. D.; Gao, H.: Indentation size effects in crytalline materials, a law for strain gradient plasticity, J. mech. Phys. solids 46, 411-425 (1998) · Zbl 0977.74557 · doi:10.1016/S0022-5096(97)00086-0
[93] Nye, J. F.: Some gemetrical relations in dislocated crystals, Acta metall. 1, 153 (1953)
[94] Ohashi, T.; Kawamukai, M.; Zbib, H.: A multiscale approach for modeling scale-dependent yield stress in polycrystalline metals, International journal of plasticity 23, 897-914 (2007) · Zbl 1115.74013 · doi:10.1016/j.ijplas.2006.10.002
[95] Olivares, F. H., Sevillano. J. Gil., 1987. A quantitative assessment of forest hardening in FCC materials. Acta. Met. 35, 631-641.
[96] Orlová, A.: Relation between the internal stress measured in creep and the stress generated by the dislocation structure in the fcc metals, Philos. mag. 11, No. 84, 3419-3426 (2004)
[97] Orowan, E.: Problems of plastic gliding, Proc. phys. Soc. 52, 8-22 (1940)
[98] Parks, D. M.; Ahzi, S.: Polycrystalline plastic deformation and texture evolution for crystals lacking five independent slip systems, J. appl. Phys. solids 38, 701-724 (1990) · Zbl 0719.73022 · doi:10.1016/0022-5096(90)90029-4
[99] Peirce, D.; Asaro, R. J.; Needleman, A.: An analysis of nonuniform and localized deformation in ductile single crystals, Acta metall 30, 1087 (1982)
[100] Peirce, D.; Asaro, R. J.; Needleman, A.: Materials rate dependence and localized deformation in crystalline solids, Acta metall. 31, 1951-1976 (1983)
[101] Petch, N. J.: The cleavage strength of polycrystals, J. iron steel inst. 174, 25-28 (1953)
[102] Raabe, D.; Klose, P.; Engl, B.; Imlau, K. P.; Friedel, F.; Roters, F.: Concepts for integrating plastic anisotropy into metal forming simulation, Adv. eng. Mater. 4, No. 4, 18-169 (2002)
[103] Rice, J. R.: Inelastic constitutive relations for solids, an internal-variable theory and its application to metal plasticity, J. mech. Phys. solids 19, No. 433 (1971) · Zbl 0235.73002 · doi:10.1016/0022-5096(71)90010-X
[104] Russell, B.: The influence of grain size on the flow stress of a copper-3.2 at.% tin solid solution, Acta met. 13, 11 (1965)
[105] Saada, G.: From the single crystal to the nanocrystal, Phil. mag. 85, No. 25 – 26, 3003-3018 (2005)
[106] Sachs, G.: Zur ableitung einer fliessbedingung, Z. ver. Dtsch. ing. 12, 134-136 (1928)
[107] Sarma, G. B.; Dawson, P. R.: Effects of interactions among crystals on the inhomogeneous deformations of polycrystals, Acta mater. 44, No. 5, 1937-1953 (1996)
[108] Sarma, G. B.; Radhakrishnan, B.; Dawson, P. R.: Mesoscale modeling of microstructure and texture evolution during deformation processing of metals, Adv. eng. Mater. 4, No. 7, 509-514 (2002)
[109] Schafler, E.; Simon, K.; Bernstorff, S.; Hanák, P.; Tichy, G.; Ungár, T.; Zehetbauer, M. J.: A second-order phase-transformation of the dislocation structure during plastic deformation determined by in situ synchrotron X-ray diffraction, Acta. mater. 53, 315-322 (2005)
[110] Schoeck, G.; Frydman, R.: The contribution of the dislocation forest to the flow stress, Phys. stat. Sol. B 53, 661 (1972)
[111] Shen, Z.; Wagoner, R. H.; Clark, W. A. T.: Dislocation pile-up and grain boundary interactions in 304 stainless steel, Scripta metall. 20, 921 (1986)
[112] Shen, Z.; Wagoner, R. H.; Clark, W. A. T.: Dislocation and grain boundary interactions in metals, Acta metal. 36, No. 12, 3231-3242 (1988)
[113] Stolken, J. S.; Evans, A. G.: A microbend test method for measuring the plasticity length-scale, Acta mater. 46, 5109-5115 (1998)
[114] Sun, S.; Adams, B. L.; King, W. E.: Observation of lattice curvature near the interface of a deformed aluminum bicrystals, Phil. mag. A, No. 80, 9 (2000)
[115] Taylor, G. I.: The mechanism of plastic deformation of crystals, Proc. roy. Soc. 165, 362 (1934) · JFM 60.0712.02 · doi:10.1098/rspa.1934.0106
[116] Tsuji, N., Ito, Y., Ueji, R., Minamino, Y., Koizumi, Y., Saito, Y., 2001. Mechanical properties of ultrafine grained ferritic steels produced by accumulative roll-bonding (ARB) process. In: ISUGS 2001, International Symposium on Ultrafine Grained Steels, Fukuoka; Japan.
[117] Vitek, V.: Structure of dislocation cores in metallic materials and its impact on their plastic behaviour, Prog. mater. Sci. 36, 1 (1992)
[118] Vitek, V.; Mrovec, M.; Bassani, J. L.: Influence of non-glide stresses on plastic flow, from atomistic to continuum modeling, Mater. sci. Eng. A 365, 31-37 (2004)
[119] Wagoner, R.H., Yao, Z.C., Wu, Q., 1998. Finite element analysis of plastic yielding in Fe-3
[120] Widersich, H.: Hardening mechanisms and the theory of deformation, J. met. 16, 423 (1964)
[121] Yefimov, S.G.I., van der Giessen, E., 2004. A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations. J. Mech. Phys. Solids 52, 279 – 300. · Zbl 1106.74331 · doi:10.1016/S0022-5096(03)00094-2
[122] Zerilli, F. J.; Armstrong, R. W.: Description of tantalum deformation by dislocation mechanics based constitutive equations, J. appl. Phys. 68, No. 4, 1580-1591 (1990)
[123] Zhao, M. C.; Hanamura, T.; Qiu, H.; Nagai, K.; Yang, K.: Grain growth and Hall – petch relation in dual-sized ferrite/cementite steel with nano-sized cementite particles in a heterogeneous and dense distribution, Scripta mater. 54, 1193-1197 (2006)
[124] Zoqui, E. J.; Robert, M. H.: Structural modifications in rheocast al – cu alloys by heat treatment and implications on mechanical properties, J. mater. Proc. tech. (Netherlands) 78, No. 1 – 3, 198-203 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.