×

An efficient NR\(xx\) method for Boltzmann-BGK equation. (English) Zbl 1427.76199

Summary: In [SIAM J. Sci. Comput. 32, No. 5, 2875–2907 (2010; Zbl 1417.82026)], we proposed a numerical regularized moment method of arbitrary order (abbreviated as NR\(xx\) method) for Boltzmann-BGK equation, which makes numerical simulation using very large number of moments possible. In this paper, we are further exploring the efficiency of the NR\(xx\) method with techniques including the 2nd order HLL flux with linear reconstruction to improve spatial accuracy, the RKC schemes to relieve the time step length constraint by the regularization terms, and the revised Strang splitting to calculate convective and diffusive terms only once without loss of accuracy. It is validated by the numerical results that the overall efficiency is significantly improved and the convergence order is kept well.

MSC:

76M99 Basic methods in fluid mechanics
76P05 Rarefied gas flows, Boltzmann equation in fluid mechanics

Citations:

Zbl 1417.82026

Software:

RKC
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954) · Zbl 0055.23609 · doi:10.1103/PhysRev.94.511
[2] Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon, Oxford (1994)
[3] Cai, Z., Li, R.: Numerical regularized moment method of arbitrary order for Boltzmann-BGK equation. SIAM J. Sci. Comput. 32(5), 2875–2907 (2010) · Zbl 1417.82026 · doi:10.1137/100785466
[4] Cai, Z., Li, R., Wang, Y.: Numerical regularized moment method for high Mach number flow. arXiv: 1011.5787 (2010) · Zbl 1373.76296
[5] Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2(4), 331–407 (1949) · Zbl 0037.13104 · doi:10.1002/cpa.3160020403
[6] Grad, H.: The profile of a steady plane shock wave. Commun. Pure Appl. Math. 5(3), 257–300 (1952) · Zbl 0047.18801 · doi:10.1002/cpa.3160050304
[7] Gu, X.J., Emerson, D.R.: A high-order moment approach for capturing non-equilibrium phenomena in the transition regime. J. Fluid Mech. 636, 177–216 (2009) · Zbl 1183.76850 · doi:10.1017/S002211200900768X
[8] Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations. Springer, Berlin (2003) · Zbl 1030.65100
[9] Jin, S., Slemrod, M.: Regularization of the Burnett equations via relaxation. J. Stat. Phys. 103(5–6), 1009–1033 (2001) · Zbl 1019.82018 · doi:10.1023/A:1010365123288
[10] Leveque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002) · Zbl 1010.65040
[11] Mizzi, S., Gu, X.J., Emerson, D.R., Barber, R.W., Reese, J.M.: Computational framework for the regularized 20-moment equations for non-equilibrium gas flows. Int. J. Numer. Methods Fluids 56(8), 1433–1439 (2008) · Zbl 1148.76043 · doi:10.1002/fld.1747
[12] Müller, I., Reitebuch, D., Weiss, W.: Extended thermodynamics – consistent in order of magnitude. Contin. Mech. Thermodyn. 15(2), 113–146 (2002) · Zbl 1057.80002 · doi:10.1007/s00161-002-0106-0
[13] Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, 2nd edn., Springer Tracts in Natural Philosophy, vol. 37. Springer, New York (1998) · Zbl 0895.00005
[14] Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968) · Zbl 0184.38503 · doi:10.1137/0705041
[15] Struchtrup, H.: Derivation of 13 moment equations for rarefied gas flow to second order accuracy for arbitrary interaction potentials. Multiscale Model. Simul. 3(1), 221–243 (2005) · Zbl 1077.76061 · doi:10.1137/040603115
[16] Struchtrup, H.: How many moments do we need, really? In: Workshop on Moment Methods in Kinetic Theory, November (2008). ETH Zürich, Switzerland
[17] Struchtrup, H., Torrilhon, M.: Regularization of Grad’s 13 moment equations: derivation and linear analysis. Phys. Fluids 15(9), 2668–2680 (2003) · Zbl 1186.76504 · doi:10.1063/1.1597472
[18] Torrilhon, M.: Two dimensional bulk microflow simulations based on regularized Grad’s 13-moment equations. Multiscale Model. Simul. 5(3), 695–728 (2006) · Zbl 1388.76340 · doi:10.1137/050635444
[19] Torrilhon, M., Jeltsch, R.: Essentially optimal explicit Runge-Kutta methods with application to hyperbolic-parabolic equations. Numer. Math. 106(2), 303–334 (2007) · Zbl 1113.65074 · doi:10.1007/s00211-006-0059-5
[20] Torrilhon, M., Xu, K.: Stability and consistency of kinetic upwinding for advection-diffusion equations. IMA J. Numer. Anal. 26(4), 686–722 (2006) · Zbl 1148.76041 · doi:10.1093/imanum/drl005
[21] van der Houwen, P.J., Sommeijer, B.P.: On the internal stability of explicit, m-stage Runge-Kutta methods for large m-values. Z. Angew. Math. Mech. 60(10), 479–485 (1980) · Zbl 0455.65052 · doi:10.1002/zamm.19800601005
[22] Verwer, J.G., Sommeijer, B.P., Hundsdorfer, W.: RKC time-stepping for advection-diffusion-reaction problems. J. Comput. Phys. 201(1), 61–79 (2004) · Zbl 1059.65085 · doi:10.1016/j.jcp.2004.05.002
[23] Yang, J.Y., Huang, J.C.: Rarefied flow computations using nonlinear model Boltzmann equations. J. Comput. Phys. 120(2), 323–339 (1995) · Zbl 0845.76064 · doi:10.1006/jcph.1995.1168
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.