×

Shakedown analysis with multidimensional loading spaces. (English) Zbl 1379.74028

Summary: A numerical method for the computation of shakedown loads of structures subjected to varying thermal and mechanical loading is proposed for the case of multidimensional loading spaces. The shakedown loading factors are determined based on the lower bound direct method using the von Mises yield criterion. The resulting nonlinear convex optimization problem is solved by use of the interior-point method. Although the underlying theory allows for the consideration of arbitrary numbers of loadings in principle, until now applications have been restricted to special cases, where either one or two loads vary independently. In this article, former formulations of the optimization problem are generalized for the case of arbitrary numbers of loadings. The method is implemented into an interior-point algorithm specially designed for this method. For illustration, numerical results are presented for a three-dimensional loading space applied to a square plate with a central circular hole.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)

Software:

Mosek; CG+; SeDuMi; SDPT3; Ipopt; LOQO
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Weichert D, Maier G (2000) Inelastic analysis of structures under variable repeated loads. Kluwer Academic Publishers, Dordrecht · Zbl 1099.74008
[2] Maier G, Pastor J, Ponter ARS, Weichert D (2003) Direct methods of limit and shakedown analysis. In: de Borst R, Mang HA (eds) Comprehensive structural integrity: fracture of materials from nano to macro, volume 3: Numerical and computational methods. Elsevier, Amsterdam, pp 637–684
[3] Weichert D, Ponter ARS (2009) Limit states of materials and structures. Springer, Wien/New York
[4] Melan E (1938) Zur Plastizität des räumlichen Kontinuums. Ing-Arch 9: 116–126 · JFM 64.0840.01
[5] Melan E (1938) Der Spannungszustand eines ”Mises-Hencky’sc hen” Kontinuums bei veränderlicher Belastung. Sitzungsberichte/Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Klasse Abteilung IIa 147: 73–87 · JFM 64.0839.01
[6] König JA (1987) Shakedown of elastic-plastic structures. Elsevier, Amsterdam
[7] El-Bakry AS, Tapia RA, Tsuchiya T, Zhang Y (1996) On the formulation and theory of the Newton interior-point method for nonlinear programming. J Optim Theory Appl 89: 507–541 · Zbl 0851.90115
[8] Gay DM, Overton ML, Wright MH (1998) A primal-dual interior method for nonconvex nonlinear programming. In: Yuan Y-X (ed) Advances in nonlinear programming. Kluwer Academic Publishers, Dordrecht, pp 31–56 · Zbl 0908.90236
[9] Potra FA, Wright SJ (2000) Interior-point methods. J Comput Appl Math 124: 281–302 · Zbl 0967.65078
[10] Forsgren A, Gill PE, Wright MH (2002) Interior methods for nonlinear optimization. SIAM Rev 44(4): 525–597 · Zbl 1028.90060
[11] Wright MH (2004) The interior-point revolution in optimization: History, recent developments and lasting consequences. Bull Am Math Soc 42(1): 39–56 · Zbl 1114.90153
[12] Vanderbei RJ (1999) LOQO: An interior-point code for quadratic programming. Optim Meth & Soft 11–12: 451–484 · Zbl 0973.90518
[13] Griva I, Shanno DF, Vanderbei RJ, Benson HY (2008) Global convergence analysis of a primal-dual interior-point method for nonlinear programming. Algorithmic Oper Res 3(1): 12–19 · Zbl 1277.90148
[14] Byrd RH, Hribar ME, Nocedal J (2000) An interior-point algorithm for large-scale nonlinear programming. SIAM J Optim 9(4): 877–900 · Zbl 0957.65057
[15] Waltz RA, Morales JL, Nocedal J, Orban D (2006) An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math Prog 107(3): 391–408 · Zbl 1134.90053
[16] Wächter A (2002) An interior point algorithm for large-scale nonlinear optimization with applications in process engineering. PhD thesis, Carnegie Mellon University, Pittsburgh
[17] Wächter A, Biegler LT (2005) Line-search filter methods for nonlinear programming: Motivation and global convergence. SIAM J Optim 16(1): 1–31 · Zbl 1114.90128
[18] Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Prog 106(1): 25–57 · Zbl 1134.90542
[19] Benson HY, Shanno DF, Vanderbei RJ (2003) A comparative study of large-scale nonlinear optimization algorithms. In: Di Pillo G, Murli A (eds) High performance algorithms and software for nonlinear optimization. Princeton University, Kluwer Academic Publishers, Princeton, Dordrecht
[20] Morales JL, Nocedal J, Waltz RW, Lie G, Goux J-P (2003) Assessing the potential of interior methods for nonlinear optimization. In: Biegler LT, Ghattas O, Heinkenschloss M, van Bloemen Waander B (eds) Large-scale PDE-constrained Optimization, vol 30, Lecture Notes in Computational Science and Engineering, pp 167–183, Springer · Zbl 1062.65063
[21] Nguyen AD, Hachemi A, Weichert D (2008) Application of the interior-point method to shakedown analysis of pavements. Int J Numer Methods Eng 75: 414–439 · Zbl 1195.74018
[22] Simon J-W, Chen M, Weichert D (2010) Shakedown analysis combined with the problem of heat conduction, vol 2. In: Proceedings of the ASME 2010 Pressure Vessels & Piping Conference, pp 133–142, Bellevue
[23] Christiansen E, Andersen KD (1999) Computation of collapse states with von Mises type yield condition. Int J Numer Methods Eng 46(8): 1185–1202 · Zbl 0951.74060
[24] Andersen ED, Jensen B, Jensen J, Sandvik R, Worsøe U (2009) MOSEK version 6. Technical Report TR–2009–3, MOSEK. URL http://www.mosek.com
[25] Trillat M, Pastor J (2005) Limit analysis and Gurson’s model. Eur J Mech A/Solids 24: 800–819 · Zbl 1125.74311
[26] Bisbos CD, Makrodimopoulos A, Pardalos PM (2005) Second-order cone programming approaches to static shakedown analysis in steel plasticity. Optim Meth & Soft 20(1): 25–52 · Zbl 1068.90099
[27] Makrodimopoulos A (2006) Computational formulation of shakedown analysis as a conic quadratic optimization problem. Mech Res Commun 33: 72–83 · Zbl 1192.74302
[28] Krabbenhøft K, Lyamin AV, Sloan SW (2007) Formulation and solution of some plasticity problems as conic programs. Int J Solids Struct 44: 1533–1549 · Zbl 1119.74035
[29] Skordeli M, Bisbos C (2010) Limit and shakedown analysis of 3d steel frames via approximate ellipsoidal yield surfaces. Eng Struct 32(6): 1556–1567
[30] Sturm JF (1999) Using SeDuMi 1.02. a MATLAB toolbox for optimization over symmetric cones. Optim Meth & Soft 11(12): 625–653 · Zbl 0973.90526
[31] Tütüncü RH, Toh KC, Todd MJ (2003) Solving semidefinite-quadratic-linear programs using SDPT3. Math Program Ser B 95: 189–217 · Zbl 1030.90082
[32] Munoz JJ, Bonet J, Huerta A, Peraire J (2009) Upper and lower bounds in limit analysis: Adaptive meshing strategies and discontinuous loading. Int J Numer Methods Eng 77(4): 471–501 · Zbl 1155.74313
[33] Liu YH, Zhang XF, Cen ZZ (2005) Lower bound shakedown analysis by the symmtric Galerkin boundary element method. Int J Plast 21: 21–42 · Zbl 1112.74552
[34] Le CV, Gilbert M, Askes H (2009) Limit analysis of plates using the EFG method and second-order conic programming. Int J Numer Methods Eng 78(13): 1532–1552 · Zbl 1171.74466
[35] Le CV, Nguyen-Xuan H, Askes H, Bordas S, Rabczuk T, Nguyen-Vinh H (2010) A cell-based smoothed finite element method for kinematic limit analysis. Int J Numer Methods Eng 83(12): 1651–1674 · Zbl 1202.74177
[36] Tran TN, Liu GR, Nguyen-Xuan H, Nguyen-Thoi T (2010) An edge-based smoothed finite element method for primal-dual shakedown analysis of structures. Int J Numer Methods Eng 82: 917–938 · Zbl 1188.74073
[37] Chen M, Hachemi A, Weichert D (2010) A non-conforming finite element for limit analysis of periodic composites. PAMM Proc Appl Math Mech 10: 405–406
[38] Ngo N, Tin-Loi F (2007) Shakedown analysis using the p-adaptive finite element method and linear programming. Eng Struct 29(1): 46–56
[39] Ardito R, Cocchetti G, Maier G (2008) On structural safety assessment by load factor maximization in piecewise linear plasticity. Eur J Mech A/Solids 27: 859–881 · Zbl 1146.74040
[40] Garcea G, Leonetti L (2009) Numerical methods for the evaluation of the shakedown and limit loads. In: Ambrosio J et al (eds) 7th EUROMECH Solid Mechanics Conference, Lisbon, Portugal · Zbl 1242.74115
[41] Lyamin AV, Sloan SW (2002) Lower bound limit analysis using nonlinear programing. Int J Numer Methods Eng 55: 573–611 · Zbl 1076.74571
[42] Krabbenhøft K, Damkilde L (2003) A general nonlinear optimization algorithm for lower bound limit analysis. Int J Numer Methods Eng 56: 165–184 · Zbl 1116.74404
[43] Pastor F, Thoré Ph, Loute E, Pastor J, Trillat M (2008) Convex optimization and limit analysis: application to Gurson and porous Drucker-Prager materials. Eng Fract Mech 75: 1367–1383
[44] Pastor F, Loute E, Pastor J, Trillat M (2009) Mixed method and convex optimization for limit analysis of homogeneous Gurson materials: a kinematic approach. Eur J Mech A/Solids 28: 25–35 · Zbl 1155.74386
[45] Pastor F, Loute E (2010) Limit analysis decomposition and finite element mixed method. J Comput Appl Math 234(7): 2213–2221 · Zbl 1402.74102
[46] Zouain N, Borges L, Silveira J (2002) An algorithm for shakedown analysis with nonlinear yield functions. Comput Methods Appl Mech Eng 191: 2463–2481 · Zbl 1054.74064
[47] Vu DK, Yan AM, Nguyen-Dang H (2004) A dual form for discretized kinematic formulation in shakedown analysis. Int J Solids Struct 41: 267–277 · Zbl 1069.74005
[48] Hachemi A, An LTH, Mouhtamid S, Tao PD (2004) Large-scale nonlinear programming and lower bound direct method in engineering applications. In: An LTH, Tao PD (eds) Modelling, Computation and Optimization in Information Systems and Management Sciences. Hermes Science Publishing, London, pp 299–310
[49] Hachemi A, Mouhtamid S, Weichert D (2005) Progress in shakedown analysis with applications to composites. Arch Appl Mech 74: 762–772 · Zbl 1158.74526
[50] Akoa FB, Hachemi A, An LTH, Mouhtamid S, Tao PD (2007) Application of lower bound direct method to engineering structures. J Glob Optim 37(4): 609–630 · Zbl 1149.90118
[51] Vu DK, Staat M (2007) Analysis of pressure equipment by application of the primal-dual theory of shakedown. Commun Numer Methods Eng 23(3): 213–225 · Zbl 1107.74007
[52] An LTH, Tao PD (1997) Solving a class of linearly constrained indefinite quadratic problems by DC algorithms. J Glob Optim 11: 253–285 · Zbl 0905.90131
[53] An LTH, Tao PD (2005) The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Annals Oper Res 133: 23–46 · Zbl 1116.90122
[54] Simon J-W, Weichert D (2010) Interior-point method for the computation of shakedown loads for engineering systems. In: ASME Conf Proc ESDA 2010, vol 4, pp. 253–262, Istanbul
[55] Simon J-W, Chen M, Weichert D (2011) Shakedown analysis combined with the problem of heat conduction. J Pressure Vessel Technol (in press)
[56] Simon J-W, Weichert D (2011) Numerical lower bound shakedown analysis of engineering structures. Comput Methods Appl Mech Eng 200: 2828–2839 · Zbl 1230.74046
[57] Groß-Weege J (1997) On the numerical assessment of the safety factor of elastic-plastic structures under variable loading. Int. J Mech Sci 39(4): 417–433 · Zbl 0891.73051
[58] Vanderbei RJ, Carpenter TJ (1993) Symmetric indefinite systems for interior point methods. Math Prog 58: 1–32 · Zbl 0791.90033
[59] Kuhn HW, Tucker AW (1950) Nonlinear programming. In: Neyman J (ed) Second Berkeley symposium on mathematical statistics and probability. University of California Press, Berkeley, pp 481–492
[60] Nguyen-Thoi T, Vu-Do HC, Rabczuk T, Nguyen-Xuan H (2010) A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes. Comput Methods Appl Mech Eng 199(45–48): 3005–3027 · Zbl 1231.74432
[61] Belytschko T (1972) Plane stress shakedown analysis by finite elements. Int J Mech Sci 14(9): 619–625
[62] Corradi L, Zavelani A (1974) A linear programming approach to shakedown analysis of structures. Comput Methods Appl Mech Eng 3: 37–53
[63] Carvelli V, Cen ZZ, Liu Y, Maier G (1999) Shakedown analysis of defective pressure vessels by a kinematic approach. Arch Appl Mech 69: 751–764 · Zbl 0969.74582
[64] Schwabe F (2000) Einspieluntersuchungen von Verbundwerkstoffen mit periodischer Mikrostruktur. PhD thesis, Institute of General Mechanics, RWTH Aachen University, Germany
[65] Chen HF, Ponter ARS (2001) Shakedown and limit analyses for 3-D structures using the linear matching method. Int J Press Vessels Piping 78: 443–451
[66] Zhang T, Raad L (2002) An eigen-mode method in kinematic shakedown analysis. Int J Plast 18: 71–90 · Zbl 1035.74011
[67] Muscat M, Mackenzie D, Hamilton R (2003) Evaluating shakedown under proportional loading by non-linear static analysis. Comput Struct 81: 1727–1737
[68] Garcea G, Armentano G, Petrolo S, Casciaro R (2005) Finite element shakedown analysis of two-dimensional structures. Int J Numer Methods Eng 63: 1174–1202 · Zbl 1084.74052
[69] Wiechmann K, Stein E (2006) Shape optimization for elasto-plastic deformation. Int J Solids Struct 43: 7145–7165 · Zbl 1120.74709
[70] Mouhtamid S (2007) Anwendung direkter Methoden zur industriellen Berechnung von Grenzlasten mechanischer Komponenten. PhD thesis, Institute of General Mechanics, RWTH Aachen University, Germany
[71] Chen S, Liu Y, Cen Z (2008) Lower bound shakedown analysis by using the element free Galerkin method and non-linear programming. Comput Methods Appl Mech Eng 197(45-48): 3911–3921 · Zbl 1194.74514
[72] Krabbenhøft K, Lyamin AV, Sloan SW (2007) Bounds to shakedown loads for a class of deviatoric plasticity models. Comput Mech 39: 879–888 · Zbl 1160.74008
[73] Zhang G (1992) Einspielen und dessen numerische Behandlung von Flächentragwerken aus ideal plastischem bzw kinematisch verfestigendem Material. PhD thesis, Institut für Mechanik, University Hannover
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.