×

Higher-dimensional cluster combinatorics and representation theory. (English) Zbl 1254.05197

Summary: Higher Auslander algebras were introduced by Iyama generalizing classical concepts from representation theory of finite-dimensional algebras. Recently these higher analogues of classical representation theory have been increasingly studied. Cyclic polytopes are classical objects of study in convex geometry. In particular, their triangulations have been studied with a view towards generalizing the rich combinatorial structure of triangulations of polygons.
In this paper, we demonstrate a connection between these two seemingly unrelated subjects. We study triangulations of even-dimensional cyclic polytopes and tilting modules for higher Auslander algebras of linearly oriented type \(A\) which are summands of the cluster tilting module. We show that such tilting modules correspond bijectively to triangulations. Moreover mutations of tilting modules correspond to bistellar flips of triangulations.
For any \(d\)-representation finite algebra we introduce a certain \(d\)-dimensional cluster category and study its cluster tilting objects. For higher Auslander algebras of linearly oriented type \(A\) we obtain a similar correspondence between cluster tilting objects and triangulations of a certain cyclic polytope.
Finally we study certain functions on generalized laminations in cyclic polytopes, and show that they satisfy analogues of tropical cluster exchange relations. Moreover we observe that the terms of these exchange relations are closely related to the terms occurring in the mutation of cluster tilting objects.

MSC:

05E10 Combinatorial aspects of representation theory
13F60 Cluster algebras

Software:

SageMath; NetworkX
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Amiot, C.: Cluster categories for algebras of global dimension 2 and quivers with potential. Ann. Inst. Fourier (Grenoble) 59, 2525-2590 (2009) · Zbl 1239.16011 · doi:10.5802/aif.2499
[2] Amiot, C.: Sur les petites catégories triangulées. PhD thesis, Univ. Paris 7 (2008)
[3] Assem, I., Brüstle, T., Schiffler, R.: Cluster-tilted algebras as trivial extensions. Bull. Lon- don Math. Soc. 40, 151-162 (2008) · Zbl 1182.16009 · doi:10.1112/blms/bdm107
[4] Barvinok, A.: A Course in Convexity. Grad. Stud. Math. 54, Amer. Math. Soc., Providence, RI (2002) · Zbl 1014.52001
[5] Baur, K., Marsh, R.: A geometric description of m-cluster categories. Trans. Amer. Math. Soc. 360, 5789-5803 (2008) · Zbl 1178.16010 · doi:10.1090/S0002-9947-08-04441-3
[6] Björner, A.: Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings. Adv. Math. 52, 173-212 (1984) · Zbl 0546.06001 · doi:10.1016/0001-8708(84)90021-5
[7] Bruggesser, H., Mani, P.: Shellable decompositions of cells and spheres. Math. Scand. 29, 197-205 (1971) · Zbl 0251.52013
[8] Buan, A. B., Krause, H.: Tilting and cotilting for quivers of type An. J. Pure Appl. Algebra 190, 1-21 (2004) · Zbl 1085.16010 · doi:10.1016/j.jpaa.2003.11.004
[9] Buan, A. B., Marsh, R., Reinecke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204, 572-618 (2006) · Zbl 1127.16011 · doi:10.1016/j.aim.2005.06.003
[10] Buan, A. B., Marsh, R., Reiten, I.: Cluster-tilted algebras. Trans. Amer. Math. Soc. 359, 323-332 (2007) · Zbl 1123.16009 · doi:10.1090/S0002-9947-06-03879-7
[11] Carathéodory, C.: Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen. Rend. Circ. Mat. Palermo 32, 193-217 (1911) · JFM 42.0429.01
[12] Dey, T. K.: On counting triangulations in d dimensions. Comput. Geom. 3, 315-325 (1993) · Zbl 0801.68155 · doi:10.1016/0925-7721(93)90005-Q
[13] Edelman, P., Reiner, V.: The higher Stasheff-Tamari posets. Mathematika 43, 127-154 (1996) · Zbl 0854.06003 · doi:10.1112/S0025579300011633
[14] Edelman, P., Rambau, J., Reiner, V.: On subdivision posets of cyclic polytopes. Eur. J. Combin. 21, 85-101 (2000) · Zbl 0951.52010 · doi:10.1006/eujc.1999.0320
[15] Fock, V., Goncharov, A.: Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. Inst. Hautes Études Sci. 103, 1-211 (2006) · Zbl 1099.14025 · doi:10.1007/s10240-006-0039-4
[16] Fomin, S., Shapiro, M., Thurston, D.: Cluster algebras and triangulated surfaces. I. Cluster complexes. Acta Math. 201, 83-146 (2008) · Zbl 1263.13023 · doi:10.1007/s11511-008-0030-7
[17] Fomin, S., Thurston, D.: Cluster algebras and triangulated surfaces. Part II: Lambda lengths. · Zbl 1263.13023 · doi:10.1007/s11511-008-0030-7
[18] Fomin, S., Zelevinsky, A.: Cluster algebras I: Foundations. J. Amer. Math. Soc. 15, 497- 529 (2002) · Zbl 1021.16017 · doi:10.1090/S0894-0347-01-00385-X
[19] Geiss, C., Keller, B., Oppermann, S.: n-angulated categories. J. Reine Angew. Math., to appear · Zbl 1271.18013 · doi:10.1515/CRELLE.2011.177
[20] Geiss, C., Leclerc, B., Schröer, J.: Rigid modules over preprojective algebras. Invent. Math. 165, 589-632 (2006) · Zbl 1167.16009 · doi:10.1007/s00222-006-0507-y
[21] Gekhtman, M., Shapiro, M., Vainshtein, A.: Cluster algebras and Weil-Petersson forms. Duke Math J. 127, 291-311 (2005) · Zbl 1079.53124 · doi:10.1215/S0012-7094-07-13925-5
[22] Hagberg, A. A., Schult, D. A., Swart, P. J.: Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference (SciPy2008), G. Varoquaux et al. (eds.), Pasadena, CA, 11-15 (2008)
[23] Herschend, M., Iyama, O.: n-representation-finite algebras and twisted fractionally Calabi-Yau algebras. Bull. London Math. Soc. 43, 449-466 (2011) · Zbl 1275.16012 · doi:10.1112/blms/bdq101
[24] Iyama, O., Oppermann, S.: n-representation-finite algebras and n-APR tilting. Trans. Amer. Math. Soc. 363, 6575-6614 (2011) · Zbl 1264.16015 · doi:10.1090/S0002-9947-2011-05312-2
[25] Iyama, O., Oppermann, S.: Stable categories of higher preprojective algebras. arXiv:0912.3412 · Zbl 1338.16018
[26] Iyama, O.: Cluster tilting for higher Auslander algebras. Adv. Math. 226, 1-61 (2011) · Zbl 1214.11082
[27] Kapranov, M., Voevodsky, V.: Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (list of results). In: International Category The- ory Meeting (Bangor, 1989 and Cambridge, 1990), Cahiers Topologie Géom. Différentielle Catég. 32, 11-27 (1991) · Zbl 0748.18010
[28] Keller, B.: On triangulated orbit categories. Doc. Math. 10, 551-581 (2005) · Zbl 1086.18006
[29] Lee, C.: The associahedron and triangulations of the n-gon. Eur. J. Combin. 10, 551-560 (1989) · Zbl 0682.52004 · doi:10.1016/S0195-6698(89)80072-1
[30] Rambau, J.: Triangulations of cyclic polytopes and higher Bruhat orders. Mathematika 44, 162-194 (1997) · Zbl 0878.52004 · doi:10.1112/S0025579300012055
[31] Rambau, J., Santos, F.: The generalized Baues problem for cyclic polytopes. I. Eur. J. Combin. 21, 65-83 (2000) · Zbl 0951.52011 · doi:10.1006/eujc.1999.0321
[32] Riedtmann, C., Schofield, A.: On a simplicial complex associated with tilting modules. Comment. Math. Helv. 66, 70-78 (1991) · Zbl 0790.16013 · doi:10.1007/BF02566636
[33] Stein, W.: Sage: Open Source Mathematical Software (version 3.2.3). The Sage Group,
[34] Thomas, H.: New combinatorial descriptions of the triangulations of cyclic polytopes and the second higher Stasheff-Tamari posets. Order 19, 327-342 (2002) · Zbl 1026.52009 · doi:10.1023/A:1022851226643
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.