×

Bifurcational dynamics of a two-dimensional stick-slip system. (English) Zbl 1302.70058

Summary: A two degree of freedom plane disk, performing one-dimensional translational and rotational motion, placed on the moving belt, is mathematically modelled and numerically analysed. The friction model for sliding phase is developed assuming the classical Coulomb friction law, valid for any infinitesimal element of circular contact area. As a result, the integral expressions for friction force and torque are obtained. The exact integral model is then approximated by the use of different functions, like Padé approximants or their modifications. Some generalizations of the approximate functions used by other authors are proposed. The special event-driven model of the investigated system together with a numerical simulation algorithm is developed, where in particular the transition conditions between the stick and slip modes are defined. Some examples of numerical simulation and analysis by the use of Poincaré maps and bifurcational diagrams are presented. It is shown that, for certain parameter sets, the investigated system exhibits very rich multi-periodic stick-slip oscillations.

MSC:

70K50 Bifurcations and instability for nonlinear problems in mechanics
70F40 Problems involving a system of particles with friction
70-08 Computational methods for problems pertaining to mechanics of particles and systems

Software:

Meschach
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Awrejcewicz, J., Holicke, M.: Analytical prediction of stick-slip chaos in a double self-excited Duffing-type oscillator. Math. Probl. Eng. Art. No 70245 (2006) · Zbl 1200.70026
[2] Awrejcewicz J., Olejnik P.: Friction pair modeling by a 2-DOF system: Numerical and experimental investigations. Int. J. Bifurc. Chaos 15(6), 1931–1944 (2005) · doi:10.1142/S021812740501306X
[3] Besselink, B., Van De Wouw, N., Nijmeijer, H.: A semi-analytical study of stick-slip oscillations in drilling systems. J. Comput. Nonlinear Dyn. 6(2), 021006-1–021006-9 (2011)
[4] Huango G., Yin G., Dai G.: Chaotic behavior of a stick slip model for rockburst. Disaster Adv. 3(4), 526–530 (2010)
[5] Kang J., Krousgrill C.M.: The onset of friction-induced vibration and spragging. J. Sound Vib. 329(17), 3537–3549 (2010) · doi:10.1016/j.jsv.2010.03.002
[6] Contensou, P.: Couplage entre frottement de glissement et de pivotement dans la téorie de la toupe. Kreiselprobleme Gyrodynamics: IUTAM Symposium, Calerina, pp. 201–216 (1962)
[7] Zhuravlev V.P.: The model of dry friction in the problem of the rolling of rigid bodies. J. Appl. Math. Mech. 62(5), 705–710 (1998) · doi:10.1016/S0021-8928(98)00090-2
[8] Zhuravlev V.P., Kireenkov A.A.: Padé expansions in the two-dimensional model of Coulomb friction. Mech. Solids 40(2), 1–10 (2005)
[9] Kireenkov A.A.: Combined model of sliding and rolling friction in dynamics of bodies on a rough plane. Mech. Solids 43(3), 412–425 (2008) · doi:10.3103/S0025654408030138
[10] Leine R.I., Glocker Ch.: A set-valued force law for spatial Coulomb-Contensou friction. Eur. J. Mech. A Solids 22(2), 193–216 (2003) · Zbl 1038.74513 · doi:10.1016/S0997-7538(03)00025-1
[11] Ma, O., Liang, J., Fillmore, S.: A 2D bristle friction force model for contact dynamics simulation. In: ASME dynamic systems and control conference, Hollywood, CA, 2010, pp. 501–508, 2009
[12] Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems. Applications in Mechanics and Electronics Series: Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer, Heidelberg p 565 (2008) · Zbl 1173.74001
[13] Leine R.I., Nijmeijer H.: Dynamics and bifurcations of non-smooth mechanical systems. Springer, Berlin (2004) · Zbl 1068.70003
[14] Bastien J., Schatzman M., Lamarque C.-H.: Study of some rheological models with a finite number of degrees of freedom. Eur. J. Mech. A Solids 19(2), 277–307 (2000) · Zbl 0954.74011 · doi:10.1016/S0997-7538(00)00163-7
[15] Janin O., Lamarque C.-H.: Comparison of several numerical methods for mechanical systems with impacts. Int. J. Numer. Methods Eng. 51(9), 1101–1132 (2001) · Zbl 1056.74059 · doi:10.1002/nme.206
[16] Awrejcewicz J., Supeł B., Lamarque C.-H., Kudra G., Wasilewski G., Olejnik P.: Numerical and experimental study of regular and chaotic motion of triple physical pendulum. Int. J. Bifurc. Chaos 18(10), 2883–2915 (2008) · Zbl 1165.70307 · doi:10.1142/S0218127408022159
[17] Awrejcewicz J., Kudra G.: Modeling, numerical analysis and application of triple physical pendulum with rigid limiters of motion. Arch. Appl. Mech. 74(11–12), 746–753 (2005) · Zbl 1158.74522 · doi:10.1007/s00419-005-0407-4
[18] Glocker Ch.: Formulation of spatial contact situations in rigid multibody systems. Comput. Methods Appl. Mech. Eng. 177, 199–214 (1999) · Zbl 0952.70007 · doi:10.1016/S0045-7825(98)00381-8
[19] Pfeiffer F., Glocker Ch.: Multibody dynamics with unilateral contacts. Wiley, New York (1996) · Zbl 0922.70001
[20] Awrejcewicz J., Lamarque C.-H.: Bifurcation and chaos in nonsmooth mechanical systems. World Scientific, Singapore (2003) · Zbl 1067.70001
[21] Moreau J.J.: Unilateral contact and dry friction in finite freedom dynamics. In: Moreau, J.J., Panagiotopoulos, P. (eds) Non-Smooth Mechanics and Applications, pp. 1–82. Springer, Wien (1988) · Zbl 0703.73070
[22] Stewart D.E., Trinkle J.C.: An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction. Int. J. Numer. Methods Eng. 39(15), 2673–2691 (1996) · Zbl 0882.70003 · doi:10.1002/(SICI)1097-0207(19960815)39:15<2673::AID-NME972>3.0.CO;2-I
[23] Möller, M., Leine, R. I., Glocker, Ch.: An efficient approximation of orthotropic set-valued force laws of normal cone type. In: Proceedings of the 7th EUROMECH solid mechanics conference, Lisbon, Portugal, 2009
[24] Andrianov I.V.: Application of Padé-approximants in perturbation methods. Adv. Mech. 14(2), 3–25 (1991)
[25] Andrianov I.V., Awrejcewicz J.: New trends in asymptotic approaches: summation and interpolation methods. Appl. Mech. Rev. 54(1), 69–92 (2001) · doi:10.1115/1.3097289
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.