×

Nonparametric tests for stochastic ordering. (English) Zbl 1284.62281

Summary: We present two new tests for stochastic ordering in a standard two-sample scheme. We approach the problem via its reparametrization in terms of Fourier coefficients in some corresponding system of functions and combining the resulting empirical Fourier coefficients. The empirical Fourier coefficients can be seen to be the asymptotically optimal linear rank statistics for the local sequences of nonparametric alternatives related to the introduced system of functions. Therefore, our first construction of the test is via multiple testing. The second test is based on sum of squares of censored empirical Fourier coefficients with the number of summands determined via a new model selection rule. The selection rule is fully automatic. Extensive simulations show that the new solutions improve upon existing tests based on adjusted variants of classical Kolmogorov-Smirnov, Anderson-Darling and \(L_1\)-distance-based statistics, among others. We show that both tests control the error of the first kind for any fixed sample sizes and are capable of detecting essentially any alternative as the sample sizes are growing to infinity. We also discuss several aspects of our constructions, including possible efficiency calculations and asymptotic comparisons.

MSC:

62G10 Nonparametric hypothesis testing
62G20 Asymptotic properties of nonparametric inference
60E15 Inequalities; stochastic orderings

Software:

reldist
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson G (1996) Nonparametric tests of stochastic dominance in income distributions. Econometrica 64:1183–1193 · Zbl 0856.90024 · doi:10.2307/2171961
[2] Barrett GF, Donald SG (2003) Consistent tests for stochastic dominance. Econometrica 71:71–104 · Zbl 1137.62332 · doi:10.1111/1468-0262.00390
[3] Behnen K (1972) A characterization of certain rank-order tests with bounds for the asymptotic relative efficiency. Ann Math Stat 43:1839–1851 · Zbl 0255.62042 · doi:10.1214/aoms/1177690855
[4] Behnen K (1981) Nichtparametrische Statistik: Zweistichproben Rangtests. Z Angew Math Mech 61:T203–T212 · Zbl 0477.62027
[5] Behnen K, Neuhaus G (1989) Rank tests with estimated scores and their application. Teubner, Stuttgart · Zbl 0692.62041
[6] Bennett CJ (2008) Consistent integral-type tests for stochastic dominance. Working Paper
[7] Bickel PJ, Ritov Y (1992) Testing for goodness of fit: a new approach. In: Saleh AKMdE (ed) Nonparametric statistics and related topics. North-Holland, Amsterdam, pp 51–57
[8] Borovkov AA, Sycheva NM (1968) On asymptotically optimal non-parametric criteria. Theory Probab Appl 13:359–393 · Zbl 0176.48805 · doi:10.1137/1113048
[9] Buckley M (1991) Detecting a smooth signal: optimality of cusum based procedures. Biometrika 78:253–262 · doi:10.1093/biomet/78.2.253
[10] Christensen R, Sun SK (2010) Alternative goodness-of-fit tests for linear models. J Am Stat Assoc 105:291–301 · Zbl 1397.62248 · doi:10.1198/jasa.2009.tm08697
[11] Daubechies I, Grossmann A, Meyer Y (1986) Painless nonorthogonal expansions. J Math Phys 27:1271–1283 · Zbl 0608.46014 · doi:10.1063/1.527388
[12] Davidson R, Duclos J-Y (2000) Statistical inference for stochastic dominance and for the measurement of poverty and inequality. Econometrica 68:1435–1464 · Zbl 1055.91543 · doi:10.1111/1468-0262.00167
[13] Davidson R, Duclos J-Y (2009) Testing for restricted stochastic dominance. Working Papers 39, GREQAM, Universities d’Aix-Marseille II and III
[14] Doksum KA, Sievers GL (1976) Plotting with confidence: graphical comparisons of two populations. Biometrika 63:421–434 · Zbl 0344.62038 · doi:10.1093/biomet/63.3.421
[15] Donoho D, Jin J (2004) Higher criticism for detecting sparse heterogeneous mixtures. Ann Stat 32:962–994 · Zbl 1092.62051 · doi:10.1214/009053604000000265
[16] Ducharme GR, Ledwina T (2003) Efficient and adaptive nonparametric test for the two-sample problem. Ann Stat 31:2036–2058 · Zbl 1065.62079 · doi:10.1214/aos/1074290336
[17] Eicker F (1979) The asymptotic distribution of the suprema of the standardized empirical process. Ann Stat 7:116–138 · Zbl 0398.62014 · doi:10.1214/aos/1176344559
[18] Escanciano JC, Lobato IN (2009) An automatic Portmanteau test for serial correlation. J Econom 151:140–149 · Zbl 1431.62365 · doi:10.1016/j.jeconom.2009.03.001
[19] Escanciano JC, Mayoral S (2010) Data-driven smooth tests for the martingale difference hypothesis. Comput Stat Data Anal 54:1983–1998 · Zbl 1284.62549 · doi:10.1016/j.csda.2010.02.023
[20] Eubank RL, Hart JD (1992) Testing goodness of fit in regression via order selection criteria. Ann Stat 20:1412–1425 · Zbl 0776.62045 · doi:10.1214/aos/1176348775
[21] Eubank RL (2000) Testing for no effect by cosine series methods. Scand J Stat 27:747–763 · Zbl 0962.62031 · doi:10.1111/1467-9469.00220
[22] Fan J (1996) Test of significance based on wavelet thresholding and Neyman’s truncation. J Am Stat Assoc 91:674–688 · Zbl 0869.62032 · doi:10.1080/01621459.1996.10476936
[23] Fan J, Huang L-S (2001) Goodness-of-fit tests for parametric regression models. J Am Stat Assoc 96:640–652 · Zbl 1017.62014 · doi:10.1198/016214501753168316
[24] Franck WE (1984) A likelihood ratio test for stochastic ordering. J Am Stat Assoc 79:686–691 · Zbl 0553.62043 · doi:10.1080/01621459.1984.10478097
[25] Groeneboom P, Shorack GR (1981) Large deviations of goodness of fit statistics and linear combinations of order statistics. Ann Probab 9:971–987 · Zbl 0473.60035 · doi:10.1214/aop/1176994268
[26] Hájek J, Šidák Z (1967) Theory of rank tests. Academic Press, New York · Zbl 0161.38102
[27] Hall P, Yatchew A (2005) Unified approach to testing functional hypotheses in semiparametric contexts. J Econom 127:225–252 · Zbl 1334.62080 · doi:10.1016/j.jeconom.2004.08.005
[28] Handcock MS, Morris M (1999) Relative distribution methods in the social sciences. Springer, New York · Zbl 0949.91029
[29] Hyndman RJ, Fan Y (1996) Sample quantiles in statistical packages. Am Stat 50:361–365
[30] Inglot T, Kallenberg WCM, Ledwina T (1993) Asymptotic behaviour of some bilinear functionals of the empirical process. Math Methods Stat 2:316–336 · Zbl 0798.62064
[31] Inglot T, Ledwina T (1993) Moderately large deviations and expansions of large deviations for some functionals of weighted empirical process. Ann Probab 21:1691–1705 · Zbl 0786.60027 · doi:10.1214/aop/1176989137
[32] Inglot T, Ledwina T (2006a) Towards data driven selection of a penalty function for data driven Neyman tests. Linear Algebra Appl 417:124–133 · Zbl 1095.62023 · doi:10.1016/j.laa.2005.10.023
[33] Inglot T, Ledwina T (2006b) Data driven score tests for homoscedastic linear regression model: the construction and simulations. In: Hušková M, Janžura M (eds) Proceedings of Prague stochastics. Matfyzpress, Prague, pp 124–137 · Zbl 1104.62051
[34] Inglot T, Ledwina T (2006c) Data driven score tests for homoscedastic linear regression model: asymptotic results. Probab Math Stat 26:41–61 · Zbl 1104.62051
[35] Inglot T, Ledwina T (2006d) Intermediate efficiency of some max-type statistics. J Stat Plan Inference 136:2918–2935 · Zbl 1094.62021 · doi:10.1016/j.jspi.2004.10.028
[36] Jaeschke D (1979) The asymptotic distribution of the supremum of the standardized empirical distribution function on subintervals. Ann Stat 7:108–115 · Zbl 0398.62013 · doi:10.1214/aos/1176344558
[37] Jager L, Wellner JA (2007) Goodness-of-fit tests via phi-divergences. Ann Stat 35:2018–2053 · Zbl 1126.62030 · doi:10.1214/0009053607000000244
[38] Janic-Wróblewska A, Ledwina T (2000) Data driven rank test for two-sample problem. Scand J Stat 27:281–297 · Zbl 0955.62045 · doi:10.1111/1467-9469.00189
[39] Kallenberg WCM (1983) Intermediate efficiency, theory and examples. Ann Stat 11:170–182 · Zbl 0512.62057 · doi:10.1214/aos/1176346067
[40] Kallenberg WCM, Ledwina T (1995) Consistency and Monte Carlo simulation of data driven version of smooth goodness-of-fit tests. Ann Stat 23:1594–1608 · Zbl 0847.62035 · doi:10.1214/aos/1176324315
[41] Ledwina T, Wyłupek G (2010) Two-sample test against one-sided alternatives. Accepted in Scand J Statist · Zbl 1246.62122
[42] Lehmann EL (1955) Ordered families of distributions. Ann Math Stat 26:399–419 · Zbl 0065.11906 · doi:10.1214/aoms/1177728487
[43] Lehmann EL, Romano JP (2005) Testing statistical hypotheses. Springer, New York · Zbl 1076.62018
[44] Neuhaus G (1982) H 0-contiguity in nonparametric testing problems and sample Pitman efficiency. Ann Stat 10:575–582 · Zbl 0492.62040 · doi:10.1214/aos/1176345798
[45] Neuhaus G (1987) Local asymptotics for linear rank statistics with estimated score functions. Ann Stat 15:491–512 · Zbl 0632.62045 · doi:10.1214/aos/1176350357
[46] Niederhausen H (1981) Sheffer polynomials for computing exact Kolmogorov–Smirnov and Rényi type distributions. Ann Stat 9:923–944 · Zbl 0494.62019 · doi:10.1214/aos/1176345574
[47] Pyke R, Shorack GR (1968) Weak convergence of a two-sample empirical process and a new approach to Chernoff–Savage theorems. Ann Math Stat 39:755–771 · Zbl 0159.48004 · doi:10.1214/aoms/1177698309
[48] Pyke R, Shorack GR (1975) Correction to ”Weak convergence of a two-sample empirical process and a new approach to Chernoff–Savage theorems”. Ann Probab 3:1068 · Zbl 0318.62017 · doi:10.1214/aop/1176996237
[49] Révész P (1982) A joint study of the Kolmogorov–Smirnov and the Eicker–Jaeschke statistics. Stat Decis 1:57–65 · Zbl 0567.62013
[50] Robertson T, Wright FT, Dykstra RL (1988) Order restricted statistical inference. Wiley, New York · Zbl 0645.62028
[51] Samorodnitsky G, Taqqu M (1994) Stable non-Gaussian random processes. Chapman & Hall, New York · Zbl 0925.60027
[52] Schmid F, Trede M (1996) Testing for first-order stochastic dominance: a new distribution-free test. Statistician 45:371–380 · Zbl 0935.62056 · doi:10.2307/2988473
[53] Stein C (1956) Efficient nonparametric testing and estimation. In: Neyman J (ed) Proceedings of the third Berkeley symposium on mathematical statistics and probability, vol 1. University of California Press, Berkeley, pp 187–195 · Zbl 0074.34801
[54] Thas O (2010) Comparing distributions. Springer, New York · Zbl 1234.62014
[55] Wyłupek G (2010) Data-driven k-sample tests. Technometrics 52:107–123 · doi:10.1198/TECH.2009.08101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.