×

Quantifying the cost of simultaneous non-parametric approximation of several samples. (English) Zbl 1326.62086

Summary: We consider the standard nonparametric regression model with Gaussian errors but where the data consist of different samples. The question to be answered is whether the samples can be adequately represented by the same regression function. To do this we define for each sample a universal, honest and non-asymptotic confidence region for the regression function. Any subset of the samples can be represented by the same function if and only if the intersection of the corresponding confidence regions is non-empty. If the empirical supports of the samples are disjoint then the intersection of the confidence regions is always non-empty and a negative answer can only be obtained by placing shape or quantitative smoothness conditions on the joint approximation, or by making additional assumptions about the support points. Alternatively, a simplest joint approximation function can be calculated which gives a measure of the cost of the joint approximation, for example, the number of extra peaks required.

MSC:

62G08 Nonparametric regression and quantile regression
62G15 Nonparametric tolerance and confidence regions
62P35 Applications of statistics to physics

Software:

ftnonpar
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Anderson, T. W. (1955). The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities., Proceedings of the American Mathematical Society , 6(2):170-176. · Zbl 0066.37402 · doi:10.2307/2032333
[2] Davies, P. L. (1995). Data features., Statistica Neerlandica , 49:185-245. · Zbl 0831.62001 · doi:10.1111/j.1467-9574.1995.tb01464.x
[3] Davies, P. L. (2004). The one-way table: In honour of John Tukey 1915-2000., Journal of Statistical Planning and Inference , 122:3-13. · Zbl 1040.62061 · doi:10.1016/j.jspi.2003.06.013
[4] Davies, P. L. (2005). Universal principles, approximation and model choice. Invited talk, European Meeting of Statisticians, Oslo.
[5] Davies, P. L. (2008). Approximating data (with discussion)., Journal of the Korean Statistical Society , 37:191-240. · Zbl 1242.62007 · doi:10.1016/j.jkss.2008.03.004
[6] Davies, P. L., Gather, U., Meise, M., Mergel, D., and Mildenberger, T. (2008a). Residual based localization and quantification of peaks in x-ray diffractograms., Annals of Applied Statistics , 2(3):861-886. · Zbl 1149.62102 · doi:10.1214/08-AOAS181
[7] Davies, P. L., Gather, U., Nordman, D. J., and Weinert, H. (2008b). A comparison of automatic histogram constructions., EIMS: Probability and Statistics . · Zbl 1180.62044 · doi:10.1051/ps:2008005
[8] Davies, P. L., Gather, U., and Weinert, H. (2008c). Nonparametric regression as an example of model choice., Communications in Statistics - Simulation and Computation , 37:274 - 289. · Zbl 1138.62021 · doi:10.1080/03610910701790285
[9] Davies, P. L. and Kovac, A. (2001). Local extremes, runs, strings and multiresolution (with discussion)., Annals of Statistics , 29(1):1-65. · Zbl 1029.62038 · doi:10.1214/aos/996986501
[10] Davies, P. L., Kovac, A., and Meise, M. (2009). Nonparametric regression, confidence regions and regularization., Annals of Statistics . · Zbl 1173.62023 · doi:10.1214/07-AOS575
[11] Delgado, M. A. (1992). Testing the equality of nonparametric regression curves., Statistics and Probability Letters , 17:199-204. · Zbl 0771.62034 · doi:10.1016/0167-7152(93)90167-H
[12] Dette, H. and Neumeyer, N. (2001). Nonparametric analysis of covariance., Annals of Statistics , 29:1361-1400. · Zbl 1043.62033 · doi:10.1214/aos/1013203458
[13] Donoho, D. L. (1988). One-sided inference about functionals of a density., Annals of Statistics , 16:1390-1420. · Zbl 0665.62040 · doi:10.1214/aos/1176351045
[14] Dümbgen, L. (1998). New goodness-of-fit tests and their application to nonparametric confidence sets., Annals of Statistics , 26:288-314. · Zbl 0930.62034 · doi:10.1214/aos/1030563987
[15] Dümbgen, L. (2003). Optimal confidence bands for shape-restricted curves., Bernoulli , 9(3):423-449. · Zbl 1044.62051 · doi:10.3150/bj/1065444812
[16] Dümbgen, L. (2006). Confidence bands for convex median curves using, sign-tests. · Zbl 1176.62047 · doi:10.1214/074921707000000283
[17] Dümbgen, L. (2007). Confidence bands for convex median curves using sign-tests. In Cator, E., Jongbloed, G., Kraaikamp, C., Lopuhaä, R., and Wellner, J., editors, Asymptotics: Particles, Processes and Inverse Problems , volume 55 of IMS Lecture Notes - Monograph Series 55 , pages 85-100. IMS, Hayward, USA. · Zbl 1176.62047 · doi:10.1214/074921707000000283
[18] Dümbgen, L. and Johns, R. (2004). Confidence bands for isotonic median curves using sign-tests., J. Comput. Graph. Statist. , 13(2):519-533. · doi:10.1198/1061860043506
[19] Dümbgen, L. and Kovac, A. (2009). Extensions of smoothing via taut strings., Electronic Journal of Statistics , 3:41-75. · Zbl 1326.62087 · doi:10.1214/08-EJS216
[20] Dümbgen, L. and Spokoiny, V. G. (2001). Multiscale testing of qualitative hypotheses., Annals of Statistics , 29(1):124-152. · Zbl 1029.62070 · doi:10.1214/aos/996986504
[21] Fan, J. and Lin, S. K. (1998). Test of significance when data are curves., Journal of American Statistical Association , 93:1007-1021. · Zbl 1064.62525 · doi:10.2307/2669845
[22] Hall, P. and Hart, D. H. (1990). Bootstrap test for difference between means in nonparametric regression., Journal of the American Statistical Association , 85(412):1039-1049. · Zbl 0717.62037 · doi:10.2307/2289600
[23] Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A. (1986)., Robust Statistics: The Approach Based on Influence Functions . Wiley, New York. · Zbl 0593.62027
[24] Härdle, W. and Marron, J. S. (1990). Semiparametric comparison of regression curves., Annals of Statistics , 18(1):63-89. · Zbl 0703.62053 · doi:10.1214/aos/1176347493
[25] Höhenrieder, C. (2008)., Nichtparametrische Volatilitäts- und Trendapproximation von Finanzdaten . PhD thesis, Department of Mathematics, University Duisburg-Essen, Germany. · Zbl 1187.91001
[26] Huber, P. J. (1981)., Robust Statistics . Wiley, New York. · Zbl 0536.62025
[27] Kabluchko, Z. (2007). Extreme-value analysis of standardized Gaussian increments.,
[28] King, E., Hart, J. D., and Wehrly, T. E. (1990). Testing the equality of two regression curves using linear smoothers., Statistics and Probability Letters , 12:239-247.
[29] Kulasekera, K. B. (1995). Comparison of regression curves using quasi-residuals., Journal of the American Statistical Association , 90(431):1085-1093. · Zbl 0841.62039 · doi:10.2307/2291346
[30] Kulasekera, K. B. and Wang, J. (1997). Smoothing parameter selection for power optimality in testing of regression curves., Journal of the American Statistical Association , 92(438):500-511. · Zbl 0894.62047 · doi:10.2307/2965699
[31] Lavergne, P. (2001). An equality test across nonparametric regressions., Journal of Econometrics , 103:307-344. · Zbl 0969.62029 · doi:10.1016/S0304-4076(01)00046-X
[32] Lehmann, E. L. (1983)., Theory of Point Estimation . Wiley. · Zbl 0522.62020
[33] Li, K.-C. (1989). Honset confidence regions for nonparametric regression., Annals of Satistics , 17:1001-1008. · Zbl 0681.62047 · doi:10.1214/aos/1176347253
[34] Munk, A. and Dette, H. (1998). Nonparametric comparison of several regression functions: Exact and asymptotic theory., Annals of Statistics , 26(6):2339-2368. · Zbl 0927.62040 · doi:10.1214/aos/1024691474
[35] Neumeyer, N. and Dette, H. (2003). Nonparametric comparison of regression curves - an empirical process approach., Annals of Statistics , 31:880-920. · Zbl 1032.62037 · doi:10.1214/aos/1056562466
[36] Pötscher, B. M. and Leeb, H. (2008). Sparse estimators and the oracle property, or the return of Hodges., Journal of Econometrics , 142:201-211. · Zbl 1418.62272 · doi:10.1016/j.jeconom.2007.05.017
[37] Tukey, J. W. (1993). Issues relevant to an honest account of data-based inference, partially in the light of Laurie Davies’s paper. Princeton University, Princeton.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.