×

Semianalytic integration of high-altitude orbits under lunisolar effects. (English) Zbl 1264.70034

Summary: The long-term effect of lunisolar perturbations on high-altitude orbits is studied after a double averaging procedure that removes both the mean anomaly of the satellite and that of the moon. Lunisolar effects acting on high-altitude orbits are comparable in magnitude to the Earth’s oblateness perturbation. Hence, their accurate modeling does not allow for the usual truncation of the expansion of the third-body disturbing function up to the second degree. Using canonical perturbation theory, the averaging is carried out up to the order where second-order terms in the Earth oblateness coefficient are apparent. This truncation order forces to take into account up to the fifth degree in the expansion of the lunar disturbing function. The small values of the moon’s orbital eccentricity and inclination with respect to the ecliptic allow for some simplification. Nevertheless, as far as the averaging is carried out in closed form of the satellite’s orbit eccentricity, it is not restricted to low-eccentricity orbits.

MSC:

70F15 Celestial mechanics
70M20 Orbital mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] T. S. Kelso, “Analysis of the Iridum 33-Cosmos 2251 Colission,” Paper AAS 09-368, American Astronautical Society, 2009.
[2] O. Montenbruck and E. Gill, Satellite Orbits: Models, Methods, and Applications, Springer, Berlin, Germany, 2000. · Zbl 0949.70001
[3] D. A. Vallado, Fundamentals of Astrodynamics and Applications, Microcosm Press and Kluwer Academic, El Segundo, Calif, USA, 2007. · Zbl 1191.70002
[4] P. J. Cefola, V. Yurasov, Z. Folcik, E. Phelps, R. J. Proulx, and A. Nazarenko, “Comparison of the DSST and the USM Semi-Analytical Orbit Propagators,” Paper AAS 03-236, American Astronautical Society, 2003.
[5] E. J. Fletcher, “Status and progress in the space surveillance and tracking segment of ESA’s space situational awareness programme,” in Proceedings of the AMOS Conference, Maui, Hawaii, USA, September 2010. · Zbl 0343.70019 · doi:10.1007/BF01260515
[6] W. D. McClain, A Recursively Formulated First-Order Semianalytic Artificial Satellite Theory Based on the Generalized Method of Averaging : The Generalized Method of Averaging Applied to the Artificial Satellite Problem, vol. 1, Computer Sciences Corporation CSC/TR-77/6010, 1977.
[7] S. Valk, A. Lemaître, and F. Deleflie, “Semi-analytical theory of mean orbital motion for geosynchronous space debris under gravitational influence,” Advances in Space Research, vol. 43, no. 7, pp. 1070-1082, 2009. · doi:10.1016/j.asr.2008.12.015
[8] J. F. San-Juan, L. M. López, and R. López, “Higher-order analytical attitude propagation of an oblate rigid body under gravity-gradient torque,” Mathematical Problems in Engineering, vol. 2012, Article ID 123138, 15 pages, 2012. · Zbl 1264.70058 · doi:10.1155/2012/123138
[9] O. Winter, D. Mourão, C. de Melo, E. Macau, J. Ferreira, and J. Carvalho, “Controlling the eccentricity of polar lunar orbits with low-thrust propulsion,” Mathematical Problems in Engineering, vol. 2009, Article ID 159287, 10 pages, 2009. · Zbl 1184.70012 · doi:10.1155/2009/159287
[10] D. Merguizo Sanchez, T. Yokoyama, P. I. De Oliveira Brasil, and R. R. Cordeiro, “Some initial conditions for disposed satellites of the systems GPS and Galileo constellations,” Mathematical Problems in Engineering, vol. 2009, Article ID 510759, 22 pages, 2009. · Zbl 1185.86025 · doi:10.1155/2009/510759
[11] R. A. Broucke, “Long-term third-body effects via double averaging,” Journal of Guidance, Control, and Dynamics, vol. 26, no. 1, pp. 27-32, 2003. · doi:10.2514/2.5041
[12] G. Metris and P. Exertier, “Semi-analytical theory of the mean orbital motion,” Astronomy and Astrophysics, vol. 294, pp. 278-286, 1995.
[13] A. F. B. A. Prado, “Third-body perturbation in orbits around natural satellites,” Journal of Guidance, Control, and Dynamics, vol. 26, no. 1, pp. 33-40, 2003. · doi:10.2514/2.5042
[14] W. M. Kaula, “Development of the lunar and solar disturbing functions for a close satellite,” Astronomical Journal, vol. 67, pp. 300-303, 1962. · doi:10.1086/108729
[15] G. Giacaglia, “Lunar perturbations of artificial satellites of the earth,” Celestial Mechanics, vol. 9, pp. 239-267, 1974. · Zbl 0343.70019 · doi:10.1007/BF01260515
[16] S. K. Collins and P. J. Cefola, “Double Averaged Third Body Model for Prediction of Super-Synchronous Orbits over Long Time Spans,” Paper AAS 79-135, American Astronautical Society, 1979.
[17] M. Lara, J. F. San-Juan, L. M. Lopez, and P. Cefola, “On third-body perturbations on high-altitude orbits,” submitted to. Celestial Mechanics and Dynamical Astronomy. · doi:10.2514/2.5042
[18] R. C. Domingos, R. Vilhena de Moraes, and A. F. B. D. A. Prado, “Third-body perturbation in the case of elliptic orbits for the disturbing body,” Mathematical Problems in Engineering, vol. 2008, Article ID 763654, 14 pages, 2008. · Zbl 1151.70011 · doi:10.1155/2008/763654
[19] C. C. Chao and R. A. Gick, “Long-term evolution of navigation satellite orbits: GPS/GLONASS/GALILEO,” Advances in Space Research, vol. 34, no. 5, pp. 1221-1226, 2004. · doi:10.1016/j.asr.2003.01.021
[20] G.-I. Hori, “Theory of general perturbation with unspecified canonical variable,” Publications of the Astronomical Society of Japan, vol. 18, no. 4, pp. 287-296, 1966.
[21] A. Deprit, “Canonical transformations depending on a small parameter,” Celestial Mechanics, vol. 1, pp. 12-30, 1969. · Zbl 0172.26002 · doi:10.1007/BF01230629
[22] J. A. Campbell and W. H. Jefferys, “Equivalence of the perturbation theories of Hori and Deprit,” Celestial Mechanics, vol. 2, no. 4, pp. 467-473, 1970. · Zbl 0205.55005 · doi:10.1007/BF01625278
[23] A. Deprit, “Delaunay normalisations,” Celestial Mechanics, vol. 26, no. 1, pp. 9-21, 1982. · Zbl 0512.70016 · doi:10.1007/BF01233178
[24] J. M. A. Danby, Fundamentals of Celestial Mechanics, Willmann-Bell, Richmond, VA, USA, 1992.
[25] A. Deprit and A. Rom, “The main problem of artificial satellite theory for small and moderate eccentricities,” Celestial Mechanics, vol. 2, no. 2, pp. 166-206, 1970. · Zbl 0199.60101 · doi:10.1007/BF01229494
[26] D. Brouwer and G. M. Clemence, Methods of Celestial Mechanics, Academic Press, New York, NY, USA, 1961. · Zbl 0132.23506
[27] J. F. San-Juan, L. M. López, and R. López, “MathATESAT: a symbolic-numeric environment in astrodynamics and celestial mechanics,” Lecture Notes in Computer Science, vol. 6783, part 2, pp. 436-449, 2011. · Zbl 05915390 · doi:10.1007/978-3-642-21887-3_34
[28] Y. Kozai, “Second-order solution of artificial satellite theory without air drag,” Astronomical Journal, vol. 67, no. 7, pp. 446-461, 1962. · doi:10.1086/108753
[29] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations. I. Non-Stiff Problems, vol. 8, Springer, Berlin, Germany, 2nd edition, 1993. · Zbl 0789.65048 · doi:10.1007/978-3-540-78862-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.